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Abstract

Recent advances in earth observation and machine learning have
opened new frontiers in impact evaluation that appear well-suited for
agricultural settings. We apply these promising methods in the con-
text of Ethiopia’s Direct Seed Marketing (DSM) program, which rolled
out after 2011 and aims to enhance farmer access to improved seed
varieties. Our satellite-based impact assessment focuses on maize pro-
ductivity as a summary outcome. Satellite-based yield predictions en-
able a high-resolution, landscape-level analysis of DSM impacts using
a difference-in-difference identification strategy, but yield prediction
errors introduce new sources of potential bias in subsequent causal in-
ference. We test for this prediction error bias and compare our DSM
impact estimates to those that use farmer-reported and crop cut yield
measures. We find evidence of small positive but insignificant effects
of the DSM on maize yield, explore how errors in predicted yields
introduce bias in causal estimation, and discuss implications for the
selection of prediction models.

JEL Codes: 013, Q12, C81, C52

Keywords: Earth observation, Impact evaluation, Agriculture, Maize,
Ethiopia, Crop yield, Direct Seed Marketing



Highlights:

o We use satellite-based maize yield predictions to evaluate the impacts
of Ethiopia’s Direct Seed Marketing (DSM) program.

« Using predicted outcomes for causal inference can introduce an addi-
tional source of non-classical measurement error that leads to biased
results, underestimating impact and overestimating precision.

 Difference-in-difference estimates of the DSM impact on maize yield are
positive but are smaller and less precise than comparable survey-based
estimates, which may be driven by yield prediction errors.

o When predicting outcomes for causal inference, the best performing
prediction models are not necessarily the best for causal inference, rais-
ing a potentially important tradeoff for satellite-based impact evalua-
tion.

1 Introduction

Satellite remote sensing has dramatically expanded in recent decades, pro-
viding Earth Observation (EO) data at higher spatial, temporal, and spec-
tral resolution than ever before. This unprecedented availability of satellite
data, much of which is freely available to users (Gorelick et al., 2017), of-
fers great promise for measurement and empirical analysis across many fields
of study. In development economics, this satellite-powered revolution has
unleashed exciting new possibilities for impact evaluation of large-scale in-
terventions that can elucidate key spatial and temporal impact dynamics and
heterogeneity, thereby generating new insights into the design of programs
and policies and into the mechanisms that drive impact. The growing in-
terest in these methods is evident not only among researchers (e.g., Burke
et al., 2021; Jain, 2020; Donaldson and Storeygard, 2016; Rolf et al., 2021),
but also within the wider development community! as evident in the recent
emergence of guidelines for satellite-based monitoring and impact evaluation
(Serrat Capdevila, Aleix; Herrmann, Stefanie Maria, 2018; Pelletier et al.,
2023; Independent Office of Evaluation of IFAD, 2023; Space, 2023).

'For example, see the GeoField 2023 Convening on Leveraging Earth Observation for
Impact Evaluations of Climate-Sensitive Agriculture, link



Given the persistent importance of agriculture among the world’s poor
and its critical spatial features, enthusiasm is understandably high for satellite-
based impact evaluation applications in international agricultural develop-
ment. In this setting, there are several notable advantages to satellite data
when combined with machine learning (ML). They allow researchers to ‘gather’
data from unsampled locations or periods, with the potential to significantly
reduce data collection costs. By obtaining data from unsampled locations
— effectively characterizing entire landscapes — researchers can in principle
analyze a full range of heterogeneous effects and spatial spillovers. Col-
lecting data from unsampled periods further enables the acquisition of pre-
intervention benchmark data or the ability to track the dissemination of in-
novations over time (e.g., BenYishay et al., 2024; Salazar et al., 2021; Al Rafi,
2023; Ferguson and Govaerts, 2024; Deines et al., 2019).

Despite the justifiable excitement for novel uses of EO data in applied
economics, this new research territory also raises new questions about the
applicability of remote sensing for causal impact evaluation. For example,
using EO-based predictions as outcome variables potentially introduces new
sources of measurement error, which may have important implications for
subsequent inference. ML methods typically achieve higher predictive accu-
racy over classical methods by reducing variance at the expense of introducing
some bias. While this bias-variance trade-off might be optimal from a predic-
tion perspective, such a narrow prediction-optimal criteria may be distinctly
sub-optimal and even misleading from a causal impact evaluation perspec-
tive. We aim to contribute to the emerging literature of satellite-based impact
evaluation by building greater appreciation for this potential tension between
what is optimal for prediction and what is optimal for causal inference. We
illustrate this possible tension in a specific application of satellite-based im-
pact evaluation and propose an error test to guide model selection and explore
bias correction methods.

We pursue these methodological objectives by using satellite data as the
basis for estimating the causal impacts of a national roll-out of an agricultural
intervention in Ethiopia. The Direct Seed Marketing (DSM) program, which
was piloted by the Government of Ethiopia in 2011 and then scaled up in the
subsequent years, aimed to strengthen the engagement of the private sector in
the seed system and thereby enhance Ethiopian farmers’ access to improved
seeds. Since maize is one of the most important staple crops for food security
in Ethiopia (Abate et al., 2015; Van Dijk et al., 2020) and a previous study
estimated that DSM increased maize yields by (a remarkable) 26 percent
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(Mekonnen et al., 2021), we take maize yield as our primary outcome of
interest and as a summary of the many ways the DSM program could have
plausibly impacted agricultural practice and production as it scaled up. In
contrast to Mekonnen et al. (2021), who use conventional farmer-reported
survey-based measures of maize yield, we use ground-truth yield data from
crop cuts to train an ML model to predict maize yield and use predicted
yield for administrative units in all maize growing areas of Ethiopia as our
outcome of interest.

Specifically, we use 30-m Landsat data to map maize, which we combine
with plot-level maize crop cut data and 250-m MODIS vegetation index to
predict maize yield from 2010 to 2020 for Ethiopia using ML-methods. We
then aggregate pixel-level predicted maize yield to averages at the district-
(woreda) level (the administrative unit of DSM implementation) and the
smaller ward- (kebele) level. Next, we deploy these average predicted maize
yields as our DSM outcome variable using a staggered difference-in-differences
(DiD) estimator (Callaway and Sant’Anna, 2021). Compared to the 26 per-
cent yield increase of Mekonnen et al. (2021), our results suggest that DSM
had much more modest (3 percent or less) and statistically insignificant im-
pacts on maize yield. To investigate this empirical discrepancy, we explore
the role that yield prediction error may play in attenuating the true DSM
effect on maize yield using crop cut data and a conceptual framework of
DiD and prediction errors. Using a large set of MLL models ranked according
to conventional measures of predictive performance, we illustrate the ten-
sion between the best model for prediction and best (least biased) model for
causal inference. We find that in satellite-based impact evaluation, what is
optimal for predicting outcomes may not necessarily be optimal for causal
inference based on analysis of these predicted outcomes.

This paper makes two contributions. First, we contribute satellite-based
impact evidence to the emerging literature that uses EO-ML methods to
evaluate agricultural interventions. To date, much of this literature has fo-
cused on remotely tracking the adoption and landscape-level diffusion of new
agricultural practices or innovations. Recent studies along these lines assess
the adoption of irrigation on crop productivity in Mali (BenYishay et al.,
2024) and in the Dominican Republic (Salazar et al., 2021), of stress-tolerant
rice varieties resilience to flood in Bangladesh (Al Rafi, 2023), of sustainable
agriculture practices on crop residue burning and health outcomes in Mex-
ico (Ferguson and Govaerts, 2024), of conservation tillage on yields (Deines
et al., 2019; Cambron et al., 2024), and of customized soil nutrient manage-
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ment advice on crop yields (Cole et al., 2020). The evidence we provide, while
more cautionary than celebratory, uses similar methods to evaluate a seed
marketing innovation. We generate several different estimates of DSM im-
pacts in order to compare the results with directly measured (crop cut) yield
and conventional self-reported yield, shedding light on the methodological
decisions that affect such satellite-based impact evidence.

Second, and more substantively, we make a methodological contribution
by addressing how new sources of (potentially non-classical) measurement
error that emerge from prediction models used to convert satellite data into
outcome variables affect subsequent causal estimation of impact. In their
enthusiasm for EO-enabled measures, researchers may fail to appreciate that
these EO-powered outcome variables are also affected by measurement error.
While measurement error in EO-based outcome variables can arise from a
host of sources (e.g., choice of satellite data, pre-processing of these data,
field data to train and validate prediction models for both classification and
regression), we highlight how the choice of a predictive model used to com-
bine these elements and predict outcomes may result in prediction errors that
bias subsequent causal inference. Formally, we show that a placebo test, i.e.
running the causal design using the prediction errors as outcome variable,
can be used to diagnose potential bias in the causal inference and to cor-
rect for it. If the resulting “prediction error placebo test” does not reject
the null hypothesis of absence of DiD effects, using ML predictions should
not introduce bias in the causal analysis. Furthermore, drawing on very re-
cent developments in the field of prediction-powered inference (Angelopoulos
et al., 2023a), we show how the “prediction error placebo test” can be used
to correct for bias.

In the next section, we provide relevant background details for Ethiopia
as our study context and for DSM in particular. In Section 3, we provide a
conceptual framework for how prediction errors can become a source of causal
inference bias and describe emerging attempts to remedy similar sources of
bias from recent literature. Section 4 describes the data sources we use for
the roll-out of the DSM and as training data for maize area and yield. Section
5 describes our yield prediction methods, causal inference and identification
strategy, and DiD prediction error tests and corrections. We conclude with
reflections on the contributions and limitations of our work and what it means
for satellite-based impact evaluation.



2 Background

The agricultural sector is central to Ethiopia’s economy, employing more
than 75 percent of the labour force and accounting for nearly 40 percent
of the GDP.? In the past 40 years, maize has become a dominant crop in
this sector with rapid increases in both area and yield (Abate et al., 2015).
Favored for its wide adaptability to different growing conditions, maize is cul-
tivated in pure monocrop stands and intercropped plots. While agricultural
productivity in Ethiopia has increased markedly, especially for cereals, yields
are still well below their potential; a recent productivity study suggests that
average maize yields in Ethiopia are only 30 percent of their potential due to
low (albeit increasing) adoption rates of fertilizer and improved seeds (World
Bank, 2022).

Among the many factors that historically discouraged Ethiopian farm-
ers’ adoption of profitable and improved inputs in agriculture, rigidity and
dysfunction in its centralized seed system has loomed large. Until recently,
Ethiopia’s seed sector was centralized into state-controlled public organiza-
tions that were responsible for the entirety of the seed system, from breeding
to distribution, which entailed complex coordination of seed production, pro-
cessing, transportation to district agricultural offices, then to development
agents and cooperatives, and finally to farmers. This state-run seed system
was inefficient, introducing more delays and dysfunction than innovation and
investment in quality. Even progressive farmers willing to pay a premium for
improved maize hybrid seeds did not generally have much choice in this sys-
tem. Delayed delivery of seeds meant delayed cultivation, which combined
with low quality seed, often of the wrong variety, translated into disappoint-
ingly low yields at harvest. For decades, experts advocated for innovation in
government policy to facilitate access and promote the adoption of improved
seed varieties or cultivars as an essential part of improving productivity and
sustainability of agricultural intensification by smallholder farmers. These
recommendations were based on evidence that the development of resilient
and inclusive national seed systems is one of the most promising strategies
to increase crop yield (Jain et al., 2023), thus reducing the existing yield
gap (Aramburu-Merlos et al., 2024), and to adapt to climate change via the
adoption of climate-resilient crop varieties (Acevedo et al., 2020; Westengen
et al., 2023).

Zhttps:/ /www.usaid.gov/ethiopia/agriculture-and-food-security



In response to these concerns and recommendations, the DSM program
was introduced in 2011 as a maize seed pilot by the Government of Ethiopia
and its partner, Integrated Seed Sector Development, in two districts of the
Ambhara region. Success of this early pilot and subsequent expansion to other
districts and regions led to the scale up of DSM after 2013. By 2020, DSM
was operational in 320 districts and had expanded from maize alone to more
than 10 crops (see Figure 1). The DSM program, which is administered at
the district level, aims to improve efficiency in the seed system and thereby
supply an expanded menu of high-quality and affordable improved seeds to
farmers in a timely manner (Benson et al., 2014). In contrast to the previous
seed system, DSM includes the following salient characteristics: 1) it allows
both public and private certified seed producers; 2) it shortens the seed
distribution chain by allowing seed producers to market directly to farmers;
3) it creates a competitive environment between seed producers which brings
the costs down; and 4) it improves seed traceability and accountability of
seed producers to farmers (for an assessment of the DSM pilot performance
relative to these objectives, see Mekonnen et al. (2019)).

Mekonnen et al. (2021) leverage a panel household survey to conduct a
quantitative evaluation of DSM’s impact on different outcomes for farming
households, including on-farm productivity of smallholder farmers. Using a
DiD approach, they find evidence that the DSM program improved eight
measures of seed system performance (e.g., seed availability, pricing, quality,
timeliness, easy of purchase, etc.). Based on farmer-reported yields, the au-
thors estimate that DSM led to an economically and statistically significant
increase in maize yields of 26 percent with statistically insignificant yield ef-
fects for other crops. Like this study and as explained in detail below, we also
adopt a DiD strategy and focus on maize yield as a summary outcome based
on the assumption that DSM efficiency gains and improvements ultimately
manifest as increased on-farm productivity, even if this ultimate impact is
transmitted through a variety of on-farm adjustments to the seed system im-
provements provided by DSM. In contrast to Mekonnen et al. (2021), we use
crop cut yield data to train a yield prediction model and use predicted maize
yield as our (summary) outcome of interest, which enables us to extend this
impact evaluation to all maize growing areas of Ethiopia rather than just
those included in the household survey.
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Figure 1: Map of DSM roll-out for maize, showing the number of years that
a district was part of the program.



3 Conceptualizing prediction error as source
of causal bias

In this section, we discuss the implications of using a predicted continuous
outcome variable, ¢, instead of the true outcome variable, y, for causal infer-
ence. With a classical measurement error structure §j = y + u, measurement
errors in a continuous y variable do not bias coefficients and only increase
their variance — unlike errors in a discrete y or errors in x — and therefore have
received relatively less attention in the literature (Hausman, 2001). However,
as we show below, errors in remotely-sensed ML predictions tend to have a
non-classical error structure, which warrants further investigation. To start
with, we assume a fairly general prediction error structure:

Uit = ¥ + it + 0T + Uy (1)

where ¢ is the ML predicted value, y the true value, and x is a poten-
tial covariate affecting measurement error. Setting v =6 = 0, A = 1 and
Cov(y,u) = 0 leads to the so-called “classical” measurement error model,
9 = y + u, under which using ¢ does not lead to bias. Denoting by ]le)(z)
the DiD estimator using outcome variable z and denoting the prediction error
by e = § — y, the linearity of both the DiD and the error structure implies
that ﬁ)(gj) can be algebraically decomposed as:?

DID(j) = ADID(y) + 6DID(x) + DiD(u) (2)
— DiD(y) + DiD(e) (3)

From this algebraic property, the bias and variance of 3PP (§), the DiD
coefficient using  as outcome variable, are:

E [6DiD(g)|X:| _ )\/BDiD _|_56DiD(x) +6DiD(u) (4)
14 |:/8DZ'D (g]) ]X] —\2V (ﬁDiD) + 52V (/BDZ'D(;E)) +V (BDiD(u)> (5)

3This is a simple numerical property of the OLS estimator that holds algebraically. Un-
der standard assumptions guaranteeing the consistency of ﬁ)(y) — DiD(y), equation (2)
and (3) will hold at the estimand level. For the proof, see Supplementary Material (SM)
section D.




Equation (2) indicates that in order to obtain an unbiased estimation
with DiD(§), the ML prediction of § should ensure that A (the slope of the
predicted versus true values) is equal to 1 and that a difference-in-difference
on both the covariates, x, and the residuals u, should be zero (or alterna-
tively, that the three terms cancel out). Equation (3) shows that the three
conditions above can be tested using the DiD (e) instead. Equation (3) is
particularly interesting as it does not rely on a specific measurement error
structure, unlike Equation (2) which is specific to the assumptions laid out
in Equation (1). Equation (3) is thus very general, and applies to any iden-
tification strategy that relies on a linear-in-y estimator: the same applies
to an RCT, IV or matching estimator.* In the analysis below, we use the
Callaway and Sant’Anna (2021) estimator, which is a (weighted) average of
DiD coefficients and is thus linear in y. Therefore, the same identity holds
for the CS-DiD design, that is CS-DiD(g) = CS-DiD(y) + CS-DiD(e).

Taken together, Equations (2) and (3) suggest two simple tests to gauge
the potential bias of a satellite-based impact evaluation. The first test in-
volves evaluating how /whether A differs from 1, which can be a first indication
of bias.> The second involves what we call here a prediction error placebo
test, i.e. making sure that evaluating the causal design of interest using e as
outcome variable instead of § does not appear significant.

Turning to the variance of the estimator, equation (5) shows that the
common wisdom that measurement error in y does not affect bias and simply
increases variance may not hold with non-classical measurement error. The
variance is now affected by A? and thus might be smaller than the variance
of the estimator without measurement error.

Unfortunately, usual ML procedures do not seek to minimize the inference-
specific bias DiD(e) or the A value , but rather to minimize the root mean
squared error (RMSE) associated with e = § —y. Whereas an RMSE of
0 will necessarily lead to a ﬁ)(e) of 0, there is no guarantee that reduc-
ing RMSE leads to an automatic reduction in [ﬁ(e). Remembering that
the RMSE loss corresponds to the squared bias and variance, a reduction in

“Equation (4) covers also the case when the treatment variable is continuous as
discussed in Proctor et al. (2023), noting that the second term in their equation 6
E[B] = A\B+044/02 corresponds to B, the coefficient of a regression of the measurement
errors on the variable x of interest.

°As Equation (2) shows, however, such test is not sufficient as A # 1 is only one part
of the total bias. Furthermore, Proctor et al. (2023) find that it accounts for only a small
share of the bias they observe in several simulations.
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RMSE could amount to reducing variance at the expense of increasing (ML)
bias, thus potentially increasing the causal bias. Unfortunately, the focus
on RMSE in the ML paradigm means that simple statistics like A are rarely
reported, obscuring the potential bias in using satellite-based predictions for
impact assessment. There is growing evidence, however, that satellite-based
ML predictions tend to have a A value below 1. Proctor et al. (2023) use ML
to predict six outcomes commonly used in economics and obtain A\ values
between 0.47 and 0.9. Out of four studies seeking to predict wealth based
on satellite data, we find that all of them obtain A\ < 1, with Ratledge et al.
(2022) reporting a value of 0.69, appendix data in Yeh et al. (2020) showing
values between 0.19 and 0.73, and visual interpretation of the scatterplots
in Jean et al. (2016) and Chi et al. (2022) indicative of A < 1. Similarly,
we find that a majority of crop yield predictions surveyed below have A < 1.
This evidence suggests that an impact assessment using these satellite-based
predictions is likely to be biased downwards with possibly smaller standard
errors, falsely indicating small or null results with confidence.

Despite the extensive research on machine learning for causal inference in
econometrics, only a handful of papers directly address the EO-ML setting
where ML is used to train a model over a small ground-truth sample and
predict over a distinct and much larger sample.® The studies addressing
prediction error in EO-ML settings can be broadly classified into three groups
depending on how they address the equation B(gj) = ﬁ(y) +B(e). In the first,
which we call the traditional measurement error correction approach, the
researcher models ex-post the relationship between ¢ and y to correct for
prediction errors in the causal parameter of interest (7). Proctor et al.
(2023) use multiple imputation error techniques based on § and y to obtain
“debiased” ¢ predictions. Wang et al. (2020b) likewise model the relationship
between § and y to adjust the inference step. Alix-Garcia and Millimet (2023)
use a binary choice model that accounts for misclassification by plugging-in
external assessments of classification errors from deforestation maps.

A second approach, which we call inference-targeted prediction, applies

6Most of the current research in econometrics focuses on the case where ML is used to
obtain the best conditional prediction #|z of x while observing z for all individuals (for
example Belloni et al., 2014 focus on IV and use ML to predict treatment D using many
instruments z). On the other hand, the EO-ML field seeks to obtain the best prediction §
of y (or & of z) over a larger sample where one does not observe the true y (or x). Future
research ought to investigate how the debiasing approaches of Chernozhukov et al. (2018,
2022) can be applied to the ML context.
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to the case where the analyst is producing her own ML prediction § and can
therefore proceed ex-ante to an upstream adjustment of the ML predictions
tailored to the causal problem at hand. Ratledge et al. (2022) use a convo-
lutional neural network (CNN) to predict livelihood in Uganda in order to
analyze the effect of electrification on livelihood. They augment the tradi-
tional loss function used in a CNN with a causal term penalizing the bias in
e, showing that their new causal-penalty parameter effectively leads to a A
closer to 1 and therefore a potentially lower DiD bias. Gordon et al. (2023)
likewise adjust their loss function to incorporate an adversarial debiasing
term.

Finally, a last set of recent papers goes beyond the comparison between
and y as done in the measurement error correction approach by leveraging the
fact that the analyst can compare 3(7) to B(y) on the ground-truth dataset
to conduct a downstream adjustment of (7). Angelopoulos et al. (2023a)
show how a large class of estimators can be corrected by combining B (out)
(the estimator obtained using the out-of-sample §,,;) with what they call the
reducer, i.e. an estimate of the in-sample (or ground truth) estimation error

A A

B(Yin)—B(Yin). They develop a method to derive confidence intervals for their
estimator, 8777 = B(fou) — (é(g}m) - é(ym)) with theoretical guarantees
on their coverage. Interestingly, applied to the DiD case, their estimator
amounts to DiD' = DiD(§out) + DiD(2;,,), which naturally arises from (3).
Angelopoulos et al. (2023b) and Zrnic and Candes (2023) provide further
discussions and extensions of the PPI estimator.

4 Data

4.1 Administrative data on DSM roll-out

Ethiopia has four levels of sub-national administrative units: regions, zones,
districts (woredas; n=691) and wards (kebeles; n=15,670). We obtained ad-
ministrative district-level data on improved seed varieties supplied and sold
by the DSM program from 2011 to 2020 from the Ethiopia Agricultural
Transformation Agency (ATA) and the Ministry of Agriculture. Maize and
wheat were the primary crop types for which seeds were supplied, both over
time and in terms of amount of seed supplied, though seeds for ten crops
were provided by the program by the end of the roll-out period. However,
there was substantial heterogeneity in the diversity in type of seed provided
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across regions participating in DSM. For example, in the Amhara region,
only improved maize seeds were provided over the course of the program.

4.2 ESS crop location and crop cut data

For this study, we obtain restricted-access geo-coordinates for plots linked
to the surveys conducted during the Ethiopia Socioeconomic Survey (ESS).
We use two waves of this survey, ESS 3 and ESS 4, a long-term panel house-
hold survey data collection project conducted by the ESS and the World
Bank Living Standards Measurement Study-Integrated Surveys on Agricul-
ture (LSMS-ISA) team. The survey collects detailed household-level data on
agriculture, such as yields and input use. In the third wave of the panel, ESS
3, 1,255 households were re-interviewed households from previous waves. In
the fourth wave, ESS 4, a new panel was created that included a total of
6,770 households interviewed for agriculture and household characteristics.
Most of the data collected through this effort is shared publicly and sup-
ported by extensive documentation including the surveys and the variables
collected (Central Statistical Agency of Ethiopia, 2016, 2019).

The ESS 3 covers the 2015 main cropping season while ESS 4 covers
the 2018 main cropping season. For ESS 3 and ESS 4, we use georeferenced
points from two different surveys: 1) the household agricultural survey, which
provides the plot GPS location per crop type for each household, and 2) the
crop cut survey, which provides the yield estimate obtained from crop cutting
at harvest for one subplot (or quadrat), that is a sample of one farm plot (not
of the full plot area). The crop cut survey was collected for a subset of farm
plots. For both surveys, the GPS waypoint was collected at only one corner
of the plot. We performed a series of verification steps to assess field data
quality and filter out mis-located point coordinates, as we described further
in Supplementary Materials (SM) C.2.

4.3 TAMASA crop location and crop cut data

We augment the ESS data with geolocated maize plots and crop cuts data
from the Taking Maize Agronomy to Scale in Africa (TAMASA) project.”
This six-year project (2014-2020) sought to improve productivity and prof-
itability for small-scale maize farmers in Ethiopia, Tanzania and Nigeria. For

"https://www.cimmyt.org/projects/taking-maize-agronomy-to-scale-in-africa-tamasa/
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Ethiopia, we obtained georeferenced crop cuts data for 2015, 2017, 2018, and
2019. The sampling design from crop cutting vary between years, but most
often used 3 subplots from the same maize farm plot. The GPS waypoint
was collected at the center of the first quadrat, located at the center of the
farm plot. Two other subplots were collected in opposite direction, on a di-
agonal from the center subplot. The maize yield for one GPS location was
estimated as the mean of the subplots.

4.4 Satellite-based maize mapping

To focus our analysis on areas where maize is grown, we map maize crop area
for the main growing (Meher) season over the country from 2010 to 2020.
For each year from 2010-2020, we create an annual maize mask that identifies
maize pixels using predictors constructed from the 30-m Landsat surface
reflectance data. The higher resolution of Landsat was more appropriate
than MODIS for identifying maize area, given that the average size of a
smallholder farmer’s plot is around or below 1 ha (Headey et al., 2014). We
select images from June to the end of December for each year, to cover the
main cropping season as identified in the ESS 3 and 4, as well as in previous
work about maize and/or cropping season onset (Dunning et al., 2016; Edao
et al., 2018; Alhamshry et al., 2020; Guo et al., 2023).

We evaluated the image count at each pixel location to see how many
cloud-free images (or pixels) per season were available to use time series
analysis for crop mapping (e.g. harmonic modelling), but the image count
was too low (2 to 3 images per season, per year). We therefore create annual
Landsat median mosaics with cloud/shade-free pixels. For each Landsat me-
dian image, we calculate four vegetation indices at the pixel-level including
the Normalized Difference Vegetation Index (NDVI), the Enhanced Vege-
tation Index (EVI), Green Chlorophyll Vegetation Index (GCVI), and the
Land Surface Water Index (LSWI).

To map maize, in addition to time-varying Landsat bands and indices, we
use time-invariant predictors that are relevant to maize suitability, including
topography, climate, and soil characteristics. We use a random forest algo-
rithm for classification, and use hyperparameter tuning to set the optimal
model specification. The best results for the maize/non-maize classification
were obtained when using the TAMASA datasets for the “maize” category
and the ESS 3 and 4 household survey for the “non-maize crop” category
as reference data, with a final sample size of 13,501 points for training and
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Georeferenced points used for maize mapping Georeferenced crop cuts used for yield prediction
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Data sources: Ethiopia Socioeconomic Survey (ESS) 3 and 4 Agricultural Households survey; ESS 4 crop cuts survey; TAMASA project data for maize only, with crop cuts. Background
from Natural Earth 1 raster data; Country boundary for Ethiopia GADM. Only the data used in the models is displayed.

Figure 2: Distribution of the field data used in final models, for maize map-
ping on the left and maize yield prediction in the right.

4,903 points for validation (Figure 2). We provide accuracy metrics obtained
from different combination of the tested datasets in Table SM.2. We then
use Landsat-derived cropland masks to exclude non-cropland pixels (Potapov
et al., 2022). These cropland extent maps have a good accuracy, ® but are not
available annually. We therefore use the 2011 cropland mask for the 2010-
2014 period, the 2015 cropland mask for 2015-2018, and the 2019 cropland
mask for 2019-2020.

The final model had 97.8% overall accuracy, with a 78.2% maize producer
accuracy (omission error of 21.8%) and 97.2% maize user accuracy (commis-
sion error of 2.8%). The choice of a model with a very low commission error
of 2.8% despite a larger omission error of 21.8% was made with the final pur-
pose of the model in mind. Admittedly, this model would not be accurate if
its goal was to quantify planted area. In fact, comparison with FAOSTAT
indicates that the model significantly underestimates maize planted area to

8Table 3 from Potapov et al. (2022) report 97.2 (0.6)% overall accuracy for stable
cropland for the Africa region.

15



approximately a fifth of the national total (Figure SM.1). However, since
the final goal of the maize map is to select the pixels over which to pre-
dict yields, the cost of falsely predicting maize pixel (and thereby predicting
maize yield on non-maize pixels) is certainly much higher than the cost of
omitting maize pixels. We therefore adopt a conservative approach using a
model with a very low commission error, giving us confidence that what we
consider maize has a high probability to be maize. At the inference level, this
means that the causal effect we are estimating is not strictly over the whole
“population” of maize pixels in Ethiopia, but rather over the pixels that have
a high probability to be maize pixels. These annual maize/non-maize maps
served as maize mask for the annual maize yield predictions discussed in the
next section.

5 Methods

5.1 Satellite-based maize yield predictions

We use ML methods to predict maize yield over the pixels that were predicted
as planted with maize according to the maize map described above. Our
empirical analysis is at administrative units much larger than pixels, so we
subsequently aggregate these pixel-level predictions of maize yields to the
district- and ward-level. Here we outline the specific data and methodology
used to construct these maize yield predictions.

We run a large collection of ML yield prediction models, based on nine
algorithms including linear regression models such as OLS, LASSO, Ridge,
elastic net to more non-parametric models such as random forest, gradient
boosting, a classification and regression tree (CART), a bagged CART and
support vector machines (SVM) (see Table SM.1), available in R’s package
tidymodels (Kuhn and Wickham, 2020).

As predictors in our ML model, we use the Aqua and Terra MODIS
Vegetation Indices 16-Day Global 250m.? Combined together, these products
provide a 8-day cloud-free time series of vegetation indices, with 23 images
for the main cropping season each year.!” The phenological signal carried by

YMYD13Q1.061 Aqua Vegetation Indices 16-Day Global 250m and MOD13Q1.061
Terra Vegetation Indices 16-Day Global 250m

10Gince only 2-3 Landsat images were available per cropping season, it did not contain
sufficient information about the crop growth status to predict yields. The temporal reso-
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MODIS vegetation indices time series helps predict crop yield for the cropping
season. However, the time series can still exhibit missing observations and
potential outlier values. To create a regularly-spaced and filtered MODIS
vegetation index time-series, we apply pixel-level temporal interpolation and
the Savitzky and Golay (1964) smoothing method. Then, we compare four
different versions of the data set: 1) unfiltered NDVI time series; 2) gap-filled
and filtered NDVI time series; 3) unfiltered EVI time series, and 4) gap-filled
and filtered EVI.

For each cropping season, we aggregate the monthly rainfall from CHIRPS
data set (Funk et al., 2015), as well as the monthly maximum daytime and
minimum nighttime land surface temperature from MODIS.! These three
predictors are each defined with 6 variables, one per month for the six-month
period, for each year. We include the same time invariant variables for eleva-
tion and soil conditions as those used for maize mapping (see Section C.3).

To train and validate the yield model, we use ground truth subplot crop
cutting data from two sources, the TAMASA project and ESS 4. These
datasets covered four different years: 2015, 2017, 2018 and 2019. We ex-
tracted the value of each predictors at the location of the maize field, match-
ing the specific season for time-varying variables (MODIS NDVI and EVI,
Landsat, and climate related variables).

The ML models are trained on the crop cut dataset using initially 75%
of observations for training and the remaining 25% for validation. Model
hyperparameters are selected based on a grid search. Out-of-sample accu-
racy measures values are calculated using a 10 fold cross-validation of the
training dataset, repeated five times. We therefore obtain 25 hyperparam-
eters combinations for each model (except for OLS), totaling 201 different
ML models.

5.2 Causal identification and inference

We use a DiD identification strategy to evaluate the causal effects of DSM
on average maize yield over time. The key identifying assumption in this
approach is that maize yield trends in non-DSM districts provide a reliable
counterfactual for DSM districts. The validity of this assumptions hinges

lution of MODIS provides better information about the maize crop phenology to support
yield prediction

1 8pecifically, we used the merged collections of Aqua and Terra Land Surface Temper-
ature and Emissivity 8-Day Global 1km (MYD11A2.061 and MOD11A2.061 products)
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on the selection and sequencing of districts into the DSM program as it was
scaled up. Based on extensive discussions with government administrators
charged with implementing the program and farmer focus groups that we
conducted as part of this study, as well as secondary data analysis, there
are a number of reasons why the DiD identifying assumption is reasonable
in this case. However, as is often true with DiD designs, we cannot com-
pletely dismiss all potential concerns about this strategy. At no point during
the DSM roll-out were districts randomly assigned to be ‘treated” by DSM.
Among maize growing districts of Ethiopia, however, the initial piloting and
early selection of districts into DSM was not based explicitly on suitability
for maize production. To illustrate, we use three rounds of ESS data that
span early (2013), middle (2015) and late (2018) stages of this roll-out to
construct distributions of land suitability for maize production for DSM and
non-DSM districts in each of these years. Figure SM.2 shows considerable
overlap of the share of land in DSM and non-DSM districts that are highly
and (especially) moderately suitable for maize production.’® This overlap
is sensible given that a number of selection criteria for DSM roll-out were
exogenous to maize productivity.

We test for parallel trends in average maize yield between DSM and non-
DSM districts and find mixed evidence. For some subsets of the data, we fail
to reject parallel trends; for others, we reject parallel trends. We hasten to
note, however, that conducting these tests with predicted maize yields raises
precisely the same prediction error concerns that are our methodological focus
in this analysis. With attenuation bias in trend estimates and overestimated
precision, it is unclear how much stock we should place in these tests. In sum,
the identifying assumption of our DiD strategy seems plausible qualitatively,
but it is impossible to defend conclusively. Given the nature of the DSM
roll-out, however, it is difficult to imagine a better identification strategy
despite these lingering potential concerns.

For this DiD analysis, we account for staggered adoption with multiple
time periods. We define DSM adoption at two administrative scales: at the
district level (n=691; the scale at which the DSM program was administered)
and which serve as our main analysis, and at the ward level (n=15,944),
which provides greater statistical power and allows for direct comparison

12The unsurprising exception is a significant difference between the two groups for land
with 0 percent of land highly or moderately suitable for maize and for land with 100
percent of land not suitable for maize.
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with Mekonnen et al. (2021).'* Recent studies have questioned the suitability
of the two-way fixed effects (TWFE) linear regression model, with unit and
time fixed effects, for settings such as this one, where groups get treated
at different times (Callaway and Sant’Anna, 2021; Goodman-Bacon, 2021;
Athey and Imbens, 2022). In the case of staggered adoption, the standard
TWFE estimator can be a weighted average of treatment effects with some
of the weights negative (Imbens, 2024). The problem of negative weights
comes from the use of already-treated groups as comparison group (Baker
et al., 2022) for groups that are treated later on.

To circumvent the issue with the TWFE approach, we apply an alterna-
tive estimator proposed by Callaway and Sant’Anna (2021) (CS-DiD), which
is intended for settings with staggered treatment timing. Their approach esti-
mates group-time average treatment effects (ATT(g,t)), where each ATT(g,t)
is the average treatment on treated effect for a group g, at a specific time
t. A unit is defined as belonging to the group g if it was treated at time
g. Importantly, DiD with staggered adoption assumes that once units are
treated at a particular point in time, they remain treated for all periods af-
terwards. With DSM, there were 45 districts that entered and exited the
program during the 2010 - 2020 panel. These districts were excluded from
the analysis.

When estimating the group-time average treatment effects, ATT(g,t), for
group ¢ in year t, we use both districts that never adopted DSM, as well as
districts that had not yet been enrolled in DSM by year ¢, as control groups
for districts that adopted DSM in year ¢g. This allows us to avoid the issues
of negative weights entering our estimates due to faulty control groups.

Callaway and Sant’Anna (2021) discuss several ways to average the group-
time specific ATT(g,t): an overall parameter averaging over all groups and
time periods, a group-specific parameter averaging over all years for each
group, a calendar-specific parameter averaging over groups for each calendar
year or a event-time specific parameter averaging groups for each event-time
period. In the following analysis, we focus on the overall average of ATT
estimates, which we denote as CS-DiD.

We first estimate CS-DiD impacts of DSM on average predicted maize

13DSM adoption at the ward level is defined based on the district that the ward falls in.
That is, all wards in the same district follow the same treatment timing path. Note, we
cannot be sure that all wards in a district received seeds from DSM. However, given the
lack of granular data on DSM adoption at the ward-level, this is a reasonable assumption
to make.
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yields at the district level. To compare these results with those of Mekonnen
et al. (2021), we conduct similar CS-DiD estimation with more disaggregated
average predicted yields at the ward level. This provides greater statistical
power, but also enables a more direct satellite-based replication of Mekonnen
et al. (2021). Specifically, we estimate impacts on all maize growing wards
as well as for those wards sampled in the household survey by Mekonnen
et al. (2021). To do this, we use the centroid of the households surveyed
for each enumeration area in their study (provided by their study team) and
selected the wards that contained the surveyed households and surrounding
agricultural land (n=374). We further test the CS-DiD estimation over only
sampled wards in the survey years of Mekonnen et al. (2021) (2012, 2016,
2019).

In addition to comparing our CS-DiD estimates using predicted yields
to the DiD estimates using household-reported yields from Mekonnen et al.
(2021), we compare the CS-DiD estimates for average predicted maize yield
by administrative units with CS-DiD estimates for the actual plot-level crop
cut maize yield. As described above, these data were collected by the ESS 4
and the TAMASA project in 2015, 2017, 2018, and 2019.

5.3 Correcting prediction error bias in DiD estimates

In this paper, we combine the inference-targeted prediction and prediction-
powered inference approaches in an attempt to correct for prediction error
bias in causal estimates. A drawback of the inference-targeted prediction
method of Ratledge et al. (2022) is that customizing the loss function to
the causal task at hand is a complicated task that prevents the use of many
off-the-shelf highly-optimized algorithms.

For studying the effect of prediction error in ML-based models on causal
inference, we use a large set of MLL models mentioned above that are routinely
used by practitioners. Whereas in a typical ML workflow, a practitioner
would select the best model based on RMSE, refit the model using all ground-
truth obvervations and use that model to generate predictions, we take a
different approach. Instead of selecting the single model leading to the lowest
RMSE, we initially keep all the models and compute the DiD criterion DiD(e)
and 51]\3(3)) on each model. We evaluate all models based on both RMSE
and causal bias, and investigate whether reducing RMSE necessarily leads to
a lower causal bias.

We then select two combinations per model, the best ML model and best
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causal model, which we use to predict yields over the pixels identified as
maize-cropped area in Ethiopia. These pixel-level maize yield predictions
are then aggregated to district or ward level means, which we use to produce
several DiD estimates of the impact of DSM. The pixel-level predictions are
aggregated to the ward and district level using the maize mask. Specifically,
we aggregated the maize map pixels (30m resolution) to the MODIS pixel
level (250m resolution) to obtain the maize coverage, defined as the number
of Landsat pixels detected as maize within a MODIS pixel. We only predict
yields on MODIS pixels with a positive maize coverage, and aggregate the
MODIS pixels to the district level by taking a weighted mean of predicted
yields across all pixels within a district, using the maize coverage as weights.

Finally, we use the prediction-powered inference approach by Angelopou-
los et al. (2023a), supplemented with recent work in Angelopoulos et al.
(2023b) and Zrnic and Candes (2023) to de-bias our estimates based on the
raw ML predictions.

6 Results

6.1 Satellite-based maize yield predictions

The annual yield prediction model was trained using the 250-m MODIS veg-
etation time series together with temperature, rain and terrain and soil vari-
ables as described in Section 5.1. In our initial exploration, the filtered EVI
vegetation index emerged as the most predictive vegetation index, which
we subsequently used to train our nine algorithms. Three algorithms consis-
tently outperformed the others in terms of RMSE: gradient boosting, bagged
CART and random forest (RF) (see Figure SM.4). Among them, gradient
boosting achieved the lowest RMSE, and was thus retained as the best-RMSE
model in the subsequent analysis.

The performance of the best-ML model evaluated on the independent
validation sample had an RMSE of 1,658 kg/ha and an R? of 0.50, while
the final model refitted and re-evaluated on the whole cropcut dataset had
an RMSE of 1,238 kg/ha and R? of 0.75 (Figure 3). While an R? value of
0.5 might seem low, this is on par with results reported elsewhere in the
literature: Burke and Lobell (2017) obtained a value of 0.39 for maize yields
in Kenya, Guo et al. (2023) 0.54 for maize yields in Ethiopia,'* Jin et al.

4Guo et al. (2023) report a higher R? value of 0.62 using a neural network model,
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Figure 3: Scatterplots showing the fit between the predicted and the actual
maize yield.

(2019) 0.39-0.54 for maize in Kenya and Uganda, and Jain et al. (2016)
0.33 for wheat in India. Even in the USA, where larger and more uniform
fields, as well as high-quality ground-truth data should make prediction more
accurate, Deines et al. (2021) obtain a R? of 0.45.

Figure SM.3 shows the distribution of ten-year average yields over space,
highlighting a clustering pattern with relatively higher yields in the Western
region.

6.2 DSM impacts on maize yield

We first estimate the effect of DSM at the district level using the best-RMSE
yield predictions. Table 1 shows the CS-DiD coefficient using different subsets
of the districts, using either all district-years available (Column 1), only the
years for which we had training data (Column 2) or only the years and
districts for which we had training data (Column 3). In each specification,
we observe a small and positive coefficient, a result at odds with the findings
of Mekonnen et al. (2021) who found a sizeable impact.

however, they noted the complexity and practical challenges associated with training and
scaling up these models, which aligns with our rationale for excluding neural networks
from the model we considered.

22



Table 1: CS-DiD estimates based on district-level predicted yields

Full Cropcut years  Cropcut years and districts
CS-DiD 70.79 96.46 75.03
[—36.00; 177.58]  [—49.84;242.76] [—138.32; 288.38|
N units 2859 892 418
N years 11 4 4
N groups 9 4 4

* 0 value outside the 95% confidence interval

Table 2: CS-DiD analysis with the sample used in Mekonnen et al. (2021).

Pred. Yields  Ln(Pred. Yields) Ln(Pred. Yields), Subset Years

CS-DiD 91.24 0.03 —0.02
[—67.84; 250.32] [—0.03; 0.09] [—0.13; 0.08]

N units 940 940 256

N years 11 11 3

N groups 8 8 7

* 0 value outside the 95% confidence interval

Indeed, Table 2 highlights how even our attempts to replicate the anal-
ysis of Mekonnen et al. (2021) as closely as possible, by using the smaller
spatial units (wards) and restricting to the survey years used in their anal-
ysis (Column 3), is unable to recover their findings. While Mekonnen et al.
(2021) find statistically significant increases in maize yields on the order of
greater than 20% using household-reported yields, we find small, statistically
insignificant increases or even decreases in predicted maize yields. In addition
to prediction errors introduced by model selection, our inability to recover
the findings of Mekonnen et al. (2021) could be driven by a variety of other
factors, such as low quality input data to the prediction model. We discuss
these issues in more detail in SM Section C.

6.3 Causal bias due to prediction error

The result above is obtained using the typical naive prediction-inference
workflow where the best RMSE model is used for inference without pay-
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ing attention to the causal accuracy of the model and its potential bias. We
revisit here the model and assess its properties in a causal sense.

Using first a model-agnostic criterion, we look at A, the coefficient of the
regression on predicted yields § on true yields y (based on the crop cuts data).
This coefficient is 0.61 [0.59, 0.62], indicating a relatively high mean-reverting
bias. According to Equation (2), this is likely to lead to attenuation bias,
i.e. an underestimation of the true effect. To verify this, we compute the
value of the overall CS-DiD as well as the individual ATT-DiD coefficients
on y, ¢ and e from the crop cut data. Results, shown in Table 3, confirm the
intuition based on observing A < 1: the value of CS-DiD(g) is indeed smaller
than CS-DiD(y) by more than 200 [kg/ha], indicating an attenuation of the
true effect. However, the value of CS-DiD(e) indicates that this difference
is not significantly different from 0. Turning to the individual ATT-DiD
coefficients, estimates on the true yield y show a large variation both across
groups and across time within groups. The null hypothesis of equality of these
coefficients is largely rejected. On the other hand, the DiD(e) coefficients
show a smaller variation and appear relatively stable over time and groups.
Running a test on the equality of all DiD(e) is not rejected, suggesting that
the prediction error can be considered as constant over time.

The previous results in Table 1 were based on the model selected based on
the RMSE criterion. As we argue above, this model is not necessarily the best
model from a causal perspective. To investigate this, we revisit the entire
collection of machine learning models that were trained, which comprised
nine different algorithms resulting in 201 model-parameter specifications (see
Table SM.1 for an overview).

The first panel of Figure 4 shows the progression of improvement in RMSE
starting from the worst (left) to the best model (right).!> Whereas the gra-
dient boosting model achieves the lowest RMSE, random forests (RF) and
bagged CART model also perform comparatively well, and the fifty best
models appear to have a similar RMSE if one considers their confidence in-
terval.! The second panel shows the A\ coefficients. All models seem to
exhibit a strong mean-reverting bias, with A\ never above the value of 0.6.
Improvements in RMSE do not seem to necessarily increase the A coefficient
toward 1: models with A closest to 1, mostly from gradient boosting, rank be-

15For readability, Figure 4 shows only the first 175 models since some model specifica-
tions performed particularly badly.
16The confidence intervals are based on the ten-fold cross-validation repeated five times.
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Table 3: DiD and CS-DiD analysis on crop cut data.

Yield y Predicted yield ¢ Errore=9—y
CS-DiD 976.4* T7.T* —258.7
[457.0;1495.9] [465.5;969.9] [—595.5; 78.1]
DiD(g=2016,t=2018) 2846.14* 1967.22* —878.92*
[1738.15;3954.12]  [1273.99;2660.44] [—1535.15; —222.69]
DiD(g=2017,t=2018) 400.32 491.39 91.07
[—963.32;1763.95] [—141.19;1123.98]  [—932.05;1114.19]
DiD(g=2018,t=2017) 61.43 -3.15 —64.58
[—623.80;746.66]  [—353.43;347.12] [—584.45; 455.28]
DiD(g=2018,t=2018) 559.71 420.52* —139.19
[—30.09; 1149.52] [140.62; 700.43] [—560.25; 281.87]
DiD(g=2019,t=2017) 914.45* 841.09* —173.36
[156.10; 1672.80] [494.06; 1188.13] [—606.84; 460.12]
DiD(g=2019,t=2018) —727.76 —609.82* 117.94
[—1523.19;67.67] [-895.71; —323.92]  [—591.95;827.83]
N units 1248 1248 1248
N years 4 4 4
N groups 4 4 4

* 0 value outside the 95% confidence interval. DiD refers to the DiD estimation of the ATT at time ¢ of the group
that received treatment at time g. Values with ¢t < g therefore refer to estimates of pre-treatment placebo effects.
CS-DiD refers to the overall treatment averaged over all DiD such that ¢ > g.
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Figure 4: Comparison of RMSE(e), A(9,y) and CS-DiD(e) for each model
specification.

tween 75th and 50th in RMSE. Interestingly, some models such as the CART
seem to be facing a clear causal versus ML accuracy trade-off, wherein an
increase in RMSE seems to lead to a reduction in the mean-reversion bias.
The third panel of Figure 4 shows the value of the prediction error placebo
test CS-DiD(e), i.e. the CS-DiD coefficient estimated on the errors from the
crop cut model.'” As one could have conjectured from the observation that
A < 1, almost all these point estimates are negative, ranging between -250
and -750. Confidence intervals are rather wide for many model specifications,
and often include zero. Qualitatively, we observe the same results as for the
A coefficients, whereas the best models in a RMSE sense do not necessarily
have CS-DiD(e) closest to zero.

1"Whereas the first two panels show coefficients estimated on the validation sample, the
CS-DiD(e) coefficient was estimated on the full sample after models were refitted.
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Table 4: CS-DiD analysis on predictions from each well-performing model.

Boosting CART CART (bagged) RF
Best ML Best Causal Best ML Best Causal Best ML Best Causal Best ML Best Causal
CS-DiD 70.79 70.25 —22.35 304.91 11.57 59.63 75.85 70.71

(55.41) (71.41) (97.17)  (193.37)  (68.60) (89.36) (47.03) (42.47)

RMSE 1658.28 1809.42 1915.44 2491.50 1661.03 1718.48 1689.35 1703.12
R? 0.50 0.42 0.36 0.20 0.49 0.46 0.48 0.47
A 0.44 0.51 0.46 0.50 0.45 0.47 0.44 0.46

To evaluate the CS-DiD coefficient on alternate prediction models, we
generated predictions for each class of model, using each time either the
model specification that led to the lowest RMSE or to the lowest value of
CS-DiD(e). Table 4 shows the CS-DiD coefficients based on each of these
model specifications. Comparing within each class of model, we observe
that using the predictions from the model with the lowest CS-DiD(e) tends
to deliver point estimates that are slightly higher compared to using best-
RMSE predictions. This is consistent with the phenomenon observed above
that most of the predictions had a negative CS-DiD(e).

We turn now to the prediction-powered inference method of Angelopou-
los et al. (2023b), which consists of correcting the satellite-based estimate
with the bias observed in the ground-truth crop cut data. Figure 5 shows
the raw and prediction-powered inference-corrected estimators for the four
model types shown above. As expected, the corrected coefficients tend to be
higher than the raw ones, though they have systematically wider confidence
intervals. The prediction-powered inference correction has a much more lim-
ited effect on the estimates that are using the best-causal predictions, which
is to be expected given that these predictions were specifically based on their
small value of CS-DiD(e). The main insight from Figure 5 is that using
a bias-corrected estimator raises the familiar bias-variance trade-off: reduc-
ing the bias of the raw estimator comes at the expense of increasing by an
important amount the width of the confidence interval.

7 Conclusion

Advances in satellite remote sensing and artificial intelligence provide excit-
ing new opportunities to inform sustainable development efforts by tracking
and measuring impacts of agricultural interventions at scale and at low cost.
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Figure 5: Comparison of naive and prediction-powered inference estimates.

However, remote sensing applications for causal impact evaluation bring new
methodological challenges. In particular, satellite-based predictions intro-
duce new sources of measurement error that may bias subsequent causal
impact estimation. In this paper, we explore the trade-off between the pre-
dictive power of ML models to generate outcome variables and causal bias by
estimating the impact of Ethiopia’s Direct Seed Marketing program (DSM)
on maize yields.

Empirically, we contribute to the ongoing expansion of the literature on
satellite-based impact evaluation of agricultural interventions, a lively con-
temporary field of development economics. The DSM program we study
aims to overhaul and modernize the seed system in Ethiopia and thereby
provide farmers greater choice of and more timely access to improved seeds.
We find some positive evidence of DSM on maize yields when measured with
satellite-based yield predictions, but this estimated impact is smaller and less
precise than the DiD estimates of DSM impact obtained using crop cut or
farmer-reported yield as outcome variables.

Methodologically, we investigate the extent to which ML prediction mod-
els that minimize RMSE and therefore appear best suited for predicting
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outcomes may be sub-optimal when using these outcomes for causal impact
analysis. Using 30-m Landsat maize maps and 250-m MODIS maize yield
predictions from 2010 to 2020, we find that predicted yields from models that
minimize RMSE can introduce non-classical measurement error that biases
DiD estimates. We provide a theoretical framework that generalizes this find-
ing to other contexts where outcomes predicted from remotely sensed data
with ML methods are used for causal inference. This tension underscores
how for researchers interested in causal inference, selection of predictive mod-
els should not be based solely on the traditional ML criteria of minimized
RMSE. When choosing between ML prediction models, researchers should
also consider a causal accuracy criterion by conducting a prediction error
placebo test. Inspired by the prediction-powered inference (PPI) approach
(Angelopoulos et al. (2023a,b); Zrnic and Candes (2023)), we propose a new
way to correct for this bias in causal estimates based on the raw ML predic-
tions. By leveraging ground truth data, this PPI bias correction is able to
produce correct confidence interval coverage.

The source of the prediction errors that are the methodological focus of
this study range from upstream measurement issues in the maize geolocation
and yield training data to downstream modelling choices, but the upstream
data issues loom large as limitations for this analysis as they do for most
similar studies. First, the type of satellite imagery that is available for our
research question and context lacks the spatial and temporal resolution of
smallholder maize farming. Newer sensors and satellites will continuously
improve the resolution of EO data and provide additional options for agricul-
tural impact evaluation in such settings (e.g., mapping maize more accurately
with time series analysis as in Jin et al., 2019; Wang et al., 2020a). Second,
ground-truth field data quality issues can introduce prediction error (Elmes
et al., 2020). One such source of error in our case was the geo-referencing
protocol used to collect our ground-truth data: a single GPS point taken at
a random corner of the surveyed plot, an unfortunate source of geo-location
measurement error that can be easily avoided by following recent recommen-
dations (Azzari et al., 2021). It is important to appreciate the out-sized
implications of such seemingly trivial data collection decisions for follow-on
yield prediction, as described in recent recommendations for crop cutting
methods (Lobell et al., 2020; Kosmowski et al., 2021; Tiedeman et al., 2022).
The good news is that some of these limitations will fade with adherence
to available recommendations for field data sampling and the availability of
new and better satellite imagery. But for the foreseeable future researchers
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will have to grapple with prediction errors and understand their empirical
implications.

Our analysis in this paper sheds light on a more general trade-off in
applied economics between EO data and survey data as the basis for em-
pirical analysis and impact evaluation specifically. Given their comparative
strengths and weaknesses, these approaches will coexist for the foreseeable
future. Appreciating the comparative advantage of each will therefore remain
essential to research in many fields. In the context of our study, survey-based
methods can provide information that is closer to the decision-making pro-
cess of farmers, which can reveal the mechanisms at work and can generate
a much richer set of outcomes. In contrast, our use of EO data focused
only on maize productivity as a summary outcome variable that subsumes a
host of on-farm responses and decisions that are (potentially) influenced by
the DSM program but invisible to satellites. Advances in sensors and ML
methods, combined with richer ground-truth data, may continue to expand
the set of outcomes that are possible to predict using EO data. There will,
however, always be limits on what researchers are able to ‘see’ in EO data —
and such data limitations will constrain our ability to tell a complete story
about how and why an intervention is effective. On the other hand, for un-
derstanding where an intervention is most (or least) effective, EO data may
be more promising than survey data. Spatial, pixel-level data can enable
researchers to conduct analysis at different scales or in different time periods
in a way that can often be modified or extended at relatively little additional
cost. This EO advantage can not only open new lines of inquiry (e.g., related
to heterogeneous effects and spillovers), but also open new geographies and
contexts that are difficult to study via survey data because they are difficult
places to survey (Porteous, 2022). We contribute to a greater appreciation
for how and when to leverage these important advantages of EO data for
impact evaluation.

While it is easy to get swept up in technical problems and sophisticated
solutions, it is also important to appreciate the more mundane key ingredi-
ents to the kind of satellite-based impact evaluation contained in this paper.
In particular, these empirical methods, as powerful and promising as they
can be, require reliable on-the-ground monitoring data that track the scale
up of programs or dissemination of products and services. Such monitor-
ing data are rarely, if ever, collected with this use in mind, but they are
an essential element of ex-post impact evaluation — and limitations in these
monitoring data can directly hamper subsequent evaluation, as illustrated in
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our case. Since its inception, the DSM program was closely monitored by
implementing organizations and partners, which included collecting, record-
ing and archiving information about the seed supplied and sold by variety
to every district. Unfortunately, since 2020, the program is managed by the
Ministry of Agriculture and the Regional Agriculture Bureaus, which have
stopped publishing the district-level seed distribution data. The accounting
of the seed distribution by DSM is done at the local level in Ethiopia, but
only provides aggregated numbers of the seed of distribution to the Ministry.
Our analysis would be more compelling with greater statistical power from
additional years, but this is not an option under the present conditions for
want of disaggregated monitoring data. Collecting programmatic informa-
tion, especially during scale-up and roll-out phases, is essential for estimating
development impacts of agricultural interventions. That will continue to be
the case even as sensors and estimation techniques become ever more sophis-
ticated.
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A Supplementary figures and tables

We compared our estimated maize area and estimated yield at national scale
to the values provided by FAOSTAT (Figure SM.1). It should be noted,
however, that the maize/non-maize prediction model does consider inter-
cropped fields as non-maize given that the ground-truth TAMASA dataset
only includes pure maize (monocrop maize) fields. On the other hand, the
FAOSTAT statistics likely include maize from intercropped fields, possibly
explaining part of the discrepancy observed. We expect that the model also
somewhat underestimates pure maize area as well.
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Figure SM.1: Comparison between the annual maize area and yield quan-
tified with this study and the national figure from FAOSTAT (Food and
Agriculture Organization food and crop statistics database)
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Figure SM.2: Share of land at district-level in different maize suitability
categories for DSM and non-DSM districts in 2013, 2015 and 2018.
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Figure SM.3: District-level statistics of predicted average maize yield in
Ethiopia averaged over 2010 to 2020.
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Figure SM.4: RMSE of the different models evaluated

44



Table SM.1: ML model specifications.

Model Name R Package Hyperparameter Name Hyperparameter Value

CART rpart cost__complexity tune
tree depth
min n tune
CART bagged rpart cost__complexity tune
tree_ depth
min n tune
class cost
RF ranger mtry tune
trees 1000
min n tune
boosting xgboost mtry
trees tune
min n tune
tree depth tune
learn rate tune
loss reduction tune
sample_size tune
stop_iter
LASSO glmnet penalty tune
mixture 1
RIDGE glmnet penalty tune
mixture 0
ENET glmnet penalty tune
mixture tune
OLS Im penalty
mixture

Column Hyperparameter Name indicates the hyperparameters of each model,
while column Hyperparameter Value indicates whether the parameter was 1)
left to its default value (no mention), 2) tuned, 3) set to a given number.
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B Heterogeneous Treatment Effects

In addition to aggregating the Callaway and Sant’Anna (2021) group-time
average treatment effects into an “overall” estimate of the effect of DSM
adoption on predicted yields, we also examined heterogeneity in treatment
effects across time and treatment adoption groups. For our heterogeneity
analysis, we selected the boosting ML algorithm which performed well ac-
cording to both the ML and causal criteria, with the lowest RMSE and the
lowest value of CS-DiD(e). This is the model used to generate the results in
section 6.2.

To estimate how the effect of DSM adoption on yields might change over
time, we take a weighted average of the group-time average treatment effects
at different lengths of exposure to DSM. An event study with unbalanced
panel shows some evidence of parallel trends before DSM, with yield increases
after DSM was adopted (Figure SM.5). We can notice large confidence in-
tervals around these point estimates.

To estimate whether the effect of DSM differs depending on when DSM
was adopted (i.e. heterogeneity by treatment adoption group), we take a
weighted average of the group-time average treatment effects across all years,
by treatment adoption group. Figure SM.6 shows that districts adopting
DSM in 2015 and 2016 experienced yield decreases on average during their
involvement in the program, while later-adopting groups experienced yield
increases on average. Further investigation into whether the execution of the
DSM program varied across time is needed to understand why groups that
adopted DSM in different years experienced such starkly contrasting impacts
on yields.
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Figure SM.5: Event study with unbalanced panel which shows the average
treatment effects by the length of exposure (x-axis) to the DSM program.
The length of exposure equal to 0 provides the average effect of participating
in the treatment across groups in the time period when they first participate
in the treatment (or instantaneous treatment effect). Length of exposure
equal to -1 corresponds to the time period before groups first participate in
the treatment, and length of exposure equal to 1 corresponds to the first time
period after initial exposure to the treatment.
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Figure SM.6: Group-specific effect of DSM on yields: group-time average
treatment effects are aggregated across all years within a group.
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C Swupplementary information on field and
satellite data processing

We provide additional information on the data used for this study, the data
processing, as well as on the remote sensing analysis for mapping maize.

C.1 Administrative data about the DSM roll-out

The administrative data on the DSM program roll-out included the region,
zone, and district (woreda; administrative level 3), and the amount seed
supplied and sold for maize by the DSM program as a spreadsheet. This
data was merged to the spatial district-level administrative data file, which
included 691 districts (woredas) and was used as the standard for this analysis
because it most closely matched the DSM administrative data. Since the
names of administrative units are not standardized amongst data sources,
a substantial effort was dedicated to ensure the match between the names
and spatial location. We had to assess any name changes and re-districting
over time so that it could be properly linked to the original name in our
spatial administrative data file, and verify that the spatial coverage on the
map match the administrative level identified by the DSM program. To
do this over time, especially for the most recent years, we compared the
spatial area (polygons) of recent 2021 administrative data file (modified was
by OCHA, obtained from CSA (Central Statistics Agency) and the Regional
Bureau of Finance and Economic Development (BoFED)) with our standard
administrative boundaries in QGIS.

The DSM program roll-out grew over time from 2 district in 2011 to 320
districts in 2020. Not all of these districts received maize however. The
number of participating districts for maize increased over time to cover a
larger portion of the country (Figure SM.7).

To link our evaluation to the study produced by IFPRI with panel house-
hold surveys, we obtained the village centroids of their survey sample, in
which they had interviewed 20 maize cultivating households in each vil-
lage. For matching the survey and the area cultivated by these surveyed
households, we used the ward administrative level (administrative level 4,
equivalent to ward; 15,670 records) which was obtained from the Ethiopia
Geoportal (on Africa Geoportal) and covered most of the maize producing
areas in the country, but not the whole country area. The village centroids
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Figure SM.7: DSM roll-out from 2011 to 2020 with DSM participant districts
shown in green and the non-participant district shown in light brown color.
(Data source: ATA for the DSM status and from Africa Open Data)
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Figure SM.8: Map of the ward administrative level (Fourth administra-
tive level (brown color); equivalent to ward), along with the wards sampled
(turquoise color) during the IFPRI study that evaluated DSM impact, using
self-reported yields through household survey method.

were used to select the wards where the IFPRI study took place (Figure
SM.8). For each ward, the belonging to a district was done by location in
QGIS. Since the program was implemented at the district level, the district
belonging determined the DSM participation status for the ward.
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C.2 Field data management

We undertook several data management steps to reduce potential error in
our reference data. We described the steps we took for the different data sets
we used in the following sections.

C.2.1 ESS 3 and 4 data sets

The Ethiopia Socioeconomic Survey provides a large data set with crop type
information. The ESS 3 contained 22,792 complete point geocoordinates
for one corner of the farm plot and crop type information associated with
that plot. Maize constituted about 14 percent of the total sample of ESS3,
with 2,639 observations for maize as the primary crop, with 2,000 of these
planted as monocrop and 639 as intercrop with 2 or more crops, as well as 556
observations of maize as a secondary crop (so intercropped). The ESS 4 had
12,207 complete point geocoordinates for one corner of the farm plot and crop
type data. Maize made up about 16 percent of the total sample, with 1,578
observations for maize as primary crop. Out of these 1,267 observations were
cultivated as monocrop and 311 were intercropped. Another 323 observations
were intercropped, with maize planted as a secondary crop. In order to assess
and improve field data quality, we first tried to eliminate erroneous points for
the maize. We extracted the value to points of the Copernicus Global land
cover maps of 2015 for the ESS 3 and 2018 for ESS 4 to identify any points
outside cropland. We found that 897 and 586 “maize” points fell outside
cropland (in other land covers including shrubs, herbaceous vegetation, open
forest, and urban) for the ESS 3 and ESS 4, respectively. Since the land
cover maps also contain error and that it was important for our purpose
to maintain as many maize points as possible, we exported these points to
keyhole markup language (kml) format and loaded them in Google Earth
Pro (GE). We then used historical imagery available in GE to validate the
land cover at each of these points. We used the time slider to identify the
relevant dates before and after the year of data collection for the points.
The timing and quality of the very high imagery available in GE for this
verification did not allow to identify the crop type most of the time; most
of the imagery were from the dry season or when the crops were not well-
developed. We were only able to identify if the point fell into cropland or not,
the closest date of the image available, and a qualitative level of certainty
for this identification (4 classes 25, 50, 75, and 100 percent certainty). Any
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points that did not have an image for the season of interest was ranked lower
in terms of certainty. Some points were unequivocally erroneous, which may
arise when/if the enumerator did not visit the field as required; they fell on
roads or in villages. The points that fell outside cropland or for which the
land cover was too uncertain were removed for this analysis. It was also clear
from this verification process that relying on one field corner point necessarily
involved substantial noise, since the field corner is always adjacent to other
fields or other land uses.

Similarly, for the points representing other crop types (non-maize), we
removed the points that fell outside cropland using the value extracted from
the year relevant land cover maps, but without further verification. The
removed “other crops” points included 9,116 observations for ESS 3 and
4,662 for ESS 4, so a substantial portion of the sample failed a basic quality
verification. Even if the size of the sample was large, it became clear from
this verification process that the data sets suffered some data quality issue
for the purpose of crop mapping.

The first attempts at mapping maize/non-maize with the ESS 3 and 4
household data was unsuccessful. We tried using different data strategy,
including: 1) combining all verified (cropland in GE with certainty > 75 per-
cent) maize monocrop and intercrop into one class versus ‘Other crops’; 2)
same as 1, but removing points that are less than 10 meters apart; 3) verified
maize with 100 percent certainty for monocrop and intercrop in one class
versus ‘Other crops’; 4) same as 3, but removing points less than 10 meters
apart; 5) verified maize monocrop only versus ‘Other crops’ (excluding inter-
cropped maize); 6) three classes with maize monocrop, maize intercropped,
and non-maize. None of these tests provided a maize class producer’s and
user’s accuracy greater than 50 percent. It was thus clear from these tests
that other field data sets were required to map maize with enough accuracy
for this study.

C.2.2 ESS 3 and 4 crop cut data sets

We obtained the ESS 3 and 4 crop cut data sets for pure maize, with the
double purpose of improving maize mapping accuracy and for predicting
yields. Since the crop cut survey required presence in the field for data
collection, we expected less error in the georeferenced coordinates. Yet, the
protocol also involved the georeferencing of only one corner per farm plot.
We still verified the location with random checks of 30 points for each year
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in GE. The crop cut information was collected for selected fields, from a
4m by 4m crop cut or 16m2, and included fresh and dry weight, excluding
permanent, tree, and root crops. Upon inspection of the yield distribution of
these crop cut data sets, we decided to include only the crop cut data from
ESS 4 (n=550) for yield prediction.

C.2.3 TAMASA data sets

The TAMASA data sets consist of only for pure maize and they were used
for both maize crop mapping and maize yield predictions. They consisted of
three datasets for 2015 covering different areas of the country with a total of
717 georeferenced maize plots, 553 for 2017, 469 for 2018, and 230 for 2019.

The plot georeferencing was again done with point data, instead of the
complete plot boundary. The experimental design involved three 4m by 4m
quadrats placed on a diagonal to capture within-field heterogeneity, except
for one dataset for the year 2015 (69 observations) which included only two
quadrats. The first quadrat was installed at the center of the field, and the
two other quadrats were placed on opposite side, at the same distance to
the middle quadrat. Some datasets had the GPS coordinates taken from the
center of the field (middle quadrat) only, while other datasets had GPS coor-
dinates for each quadrat. The plot locations for each dataset were exported
to .kml and randomly check to verify the quality of the geolocation for the
period matching the field data collection in Google Earth Pro. These maize
plot locations were used as reference data for creating annual maize maps
from 2010 to 2020 over Ethiopia.

The crop cuts data was collected during the Meher season (main cropping
season) for a large subset of the georeferenced maize plots, including 659 plots
for 2015, 542 for 2017, 464 for 2018, and 230 for 2019. Two 2015 data sets
provided the yield estimate directly, while other provided the variables for
yield calculation (the weight of grain relative the weight of cobs, as well as
the moisture content ratio calculated on a dried subsample). We calculated
the yield for each quadrat and them computed the mean yield of the quadrats
for field in kilograms per hectare (kg/ha). The yield information for these
crop cuts data sets was used as reference data for predicting maize yield,
with remotely sensed predictors.
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C.3 Maize crop mapping

For mapping maize cropland, we used Landsat surface reflectance Tier 1 col-
lections, including data from Landsat 5 TM, Landsat 7 ETM+, Landsat 8
OLI. We limited the use of Landsat 7 ETM+ collection up until Landsat
8 imagery became available (March 18th, 2013), to reduce potential arte-
facts caused by the Scan Line Corrector (SLC) failure missing data. The
pre-processing of each collection was done separately for the images cover-
ing Ethiopia. It included the application of scaling factors for radiometric
calibration, cloud and cloud shade masking, and the renaming of the bands
from the Landsat 5 and 7 collection to match the Landsat 8 collection. The
collections were merged together and included 7,349 images.

We compared two methods to create annual seasonal mosaic: a median
composite, which consist in calculating the median of all the cloud/shade
free pixels at a location and a greenest pixel composite, which consist in
selecting the pixel with the highest NDVI value. After evaluation, we chose
the median mosaic because the greenest pixel composite resulted in shade
artefacts in mountainous agricultural areas which characterize are large part
of Ethiopia.

The annual maize/non-maize maps created annually from 2010 to 2020,
were based on the Landsat median mosaic. For each pre-processed Landsat
image, we calculated four indices, the NDVI (Rouse et al., 1974), the GCVI
(Huete et al., 1997), the GCVI (Gitelson et al., 2003) and the LSWI (Xiao
et al., 2002). We provide the equation for these indices below:

NIR — RED

N N RED NIR— RED "

EVI= 2'5]\; NTRT6x RED 75 x BLUE 11 0
o .
LSWI =g 1 SWIRI1 )

In addition to Landsat imagery, we included different time-invariant co-
variates that are relevant to maize suitability. These covariates included
the STRM 90m elevation dataset (Jarvis et al., 2008) and elevation-derived
slope and aspect. It incorporated climate related variables, including the
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mean, maximum and minimum Meher seasonal rainfall for the period 2000
to 2020 from the CHIRPS pentad dataset (Funk et al., 2015), the Meher
seasonal mean and maximum day time land surface temperature as well
as the minimum nighttime temperature from the MODIS/Terra Land Sur-
face Temperature/Emissivity 8-Day (MOD11A2) Version 6.1. We added soil
characteristics important for maize cultivation (Fang and Su, 2019), includ-
ing depth to bedrock, as well as soil pH, percent sand content and soil organic
carbon at two depths, 0 to 20 cm and 20 to 50 cm (Hengl et al., 2017).

C.3.1 Maize map model selection and accuracy assessment

The spatio-temporal maize/non-maize crop classification was supported by
field data collected over different years for the main cropping season. For each
field data set, we extracted the values of the year-specific as well as time-
invariant covariates. Figure SM.9 shows the maize/non-maize classification
for year 2018, with close up comparison with higher resolution imagery from
Google Earth Pro.

For the classification model, we first partitioned the field data using
an 80/20 ratio for training and validation. The validation data was used
uniquely for the purpose of evaluating the model’s performance. To address
possible spatial correlation that may inflate the classification accuracy, we en-
forced a minimum distance by removing training points that were less than
100 meters from validation data points.

We compared different data strategies to map maize annually, by testing
different combinations of input datasets and comparing the maize classifi-
cation accuracy (Table SM.2). While, the “Other crops” (or non-maize)
class and the overall accuracy were consistently high, the most importance
metrics for our purpose were the accuracy of the Maize class, including the
maize producer’s accuracy (1-Omission Error) and the maize user’s accuracy
(1-Commission Error).

We were interested to strike a good balance with high value from both
the producer’s accuracy and the user’s accuracy for maize, yet, it was more
important to minimize commission error (non-maize classified as maize) for
the purpose of this analysis. The best model was obtained by combining
the TAMASA datasets (for maize only) and the ESS 3 and 4 agricultural
household surveys for the non-maize crop class. We can observe from the
district-level statistics, that the pure maize area remains more or less stable
over time (Figure SM.10), with few districts showing high areas of pure maize.
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Figure SM.9: Maize and non-maize map of Ethiopia from 2018, with close
up areas from Google Earth Pro for the same year.
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Figure SM.10: District-level statistics about pure maize area (in hectares) in
Ethiopia from 2010 to 2020. 59



We also performed a model validation per year, by doing the data par-
titioning between training and validation for each year separately, and then
merging the training data together for building the model. We obtained four
validation samples, one for each year, that we used to check for the model
consistency between years. The results were consistent for 2017, 2018, and
2019, but the maize producer’s accuracy as lower for the year 2015, which
also had the largest validation sample size. This may thus underestimate the
maize area for that year. We could not validate the other years because of
the lack of field data.

We believe that the confusion in the maize class may stem from at least
two main potential sources of error. First, the georeferenced field corner
point collected during the ESS 3 and 4 is adjacent to other fields or land
uses, with some of them containing maize crop and providing a mixed signal
at the 30-m Landsat pixel resolution. The ESS 3 and 4 household survey and
crop cut data sets have deficiencies in the geo-positioning of field (with field
corner point) which is not ideal for the purpose of crop type mapping (Azzari
et al., 2021). Second, the maize training data from TAMASA was for pure
maize alone, as a monocrop, while we know that maize is often intercropped
in Ethiopia, that is, cultivated jointly and simultaneously with two or more
crops interspersed on the same field. It is thus possible that part of the non-
maize on the ground that is classified as maize and vice versa by our model
come from the combination of these sources of error.

Another limitation is related the difficulty to identify the crop type for
smallholder farms on very high-resolution imagery. We do not control the
timing of the image that are publicly available (in Google Earth) , most of
which are for the dry season. We have thus to rely on already collected field
data. This means that we cannot generate our own set of random points per
class, that we could use to verify independently our maize/non-maize map
results. Even if we counted on field data from four different years to support
our spatio-temporal predictions, we were not able to verify the quality of our
maize/non-maize classification for the years for which we do not have field
data.

D Mathematical derivations

To understand Equation (2), it is best to start from the OLS representation
of the DiD coefficient, remembering that the DiD is equivalent to a two-way
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fixed effects estimator when there is a single common intervention time:

]le)(y) _ Cov(g},~D) _ Cov(y,~D)
Var(D) Var(D)
where the tilde Z corresponds to the two-way within transformation, Z;; =
Ti¢ + T;. + T+ 7., and the second equality comes from the properties of the
Frish-Waugh theorem.
Looking now at:

— Cov(q, D
DiD(9) = Val("(f)))
~ Cov(y + Ayir + 0 + g, D)
Var(D)
B /\Cov(yit,[?) 5Cov(xit,l~?) Cov(uy, D)
" Var(D) Var(D) Var(D)

= ADiD(y) + 6DiD(z) 4+ DiD(u)

Second, looking at the observed prediction error e = §j — y, one has:

e=j—y=7+ A= Dy + 0w + uy
Then
DiD(e) = SoV(& D)
Var(D)
~ Cov(y + (AN = Dy + 0mgy + wiy, D)
Var(D)
B /\Cov(yit,f)) B Cov(yi, D) +5Cov(x,~t,f)) Cov(ug, D)
" Var(D) Var(D) Var(D) Var(D)

= ADiD(y) — DiD(y) + 6DiD(x) + DiD(u)
= DiD(j) — DiD(y)
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