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Abstract

The extraction of critical minerals and metals in Sub-Saharan Africa is expected to intensify in the

coming years, potentially displacing existing economic activities. Mining can impact local agriculture in

two key ways: through demand shocks, which raise the returns to inputs in non-agricultural sectors, and

pollution shocks, which lower returns within agriculture itself. This paper examines the extent to which

pollution externalities from industrial mining affect local agricultural output in Sub-Saharan Africa.

Combining mine geolocations, topographical data, and satellite-based measures of pollution, crop yields,

and weather, I identify areas around mines that are disproportionately exposed to pollution but not the

economic effects of local demand booms. Leveraging variation around the openings of over 300 mines

across the region, I find that air and water pollution externalities account for 44% of the overall reduction

in yields caused by industrial mining, with water pollution being over 10 times more influential than air

pollution. Furthermore, I use machine learning methods to document that negative effects on local yields

are 2-3 times more severe for mines in countries with weaker governance and regulatory environments.

1 Introduction

A majority of the countries in Sub-Saharan Africa depend heavily on natural resources for government

revenues, export earnings and development potential. Of the 48 countries in this region, 26 are classified

as “resource-rich” by the International Monetary Fund, meaning that at least 20% of their exports or fiscal

revenue derive from natural resources (Cust and Zeufack, 2023). This dependence on natural resource

extraction in Africa is anticipated to increase. From electric vehicles to solar panels, the global transition to

clean energy has led to a boom in demand for critical minerals and metals. According to the International

Energy Agency, demand for cobalt and nickel is projected to double, while lithium demand could increase

nearly ten-fold over the next two decades (Chen et al., 2024).

In this paper, I investigate how air and water pollution caused by industrial mining affect local agricultural

output in Sub-Saharan Africa. The emergence of new, high-return sectors like mining can attract resources

and increase labor demand, fostering economic development through structural transformation. However,
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mining also creates local pollution externalities that may lower agricultural productivity, causing reallocation

of economic activity without accompanying increases in earnings.

To quantify the pollution externalities of mining on agricultural output in Sub-Saharan Africa, I combine

a comprehensive geospatial dataset of mines from S&P Global Market Intelligence with topographical data

and satellite-based measures of pollution, crop yields, and weather. I separate the effects of mining pollu-

tion from those of local demand booms by exploiting geographic factors—such as river networks and wind

patterns—that channel pollution in specific directions, unlike labor and land demand shocks, which are not

similarly constrained. Using variation in pollution exposure around mine openings across Africa between

2000 and 2022, I apply two spatial difference-in-difference (DID) approaches: (1) comparing upstream and

downstream areas to measure water pollution impacts, and (2) comparing areas with high and low downwind

exposure for air pollution. In both cases, I define a mine opening as the start of commercial-level production.

Local crop yields are proxied using the normalized difference vegetation index (NDVI) detected over cropland

pixels.

To assess the impact of mining-induced water pollution, I compare remotely sensed pollution levels and

crop yields between areas located upstream and downstream of mines along rivers, before and after a mine

opening. With this approach, I make a methodological contribution by using a novel, satellite-based proxy

for total suspended solids (TSS) in water: the normalized difference turbidity index (NDTI). While NDTI

has previously been used in remote sensing to monitor water quality in regions with limited data (Lacaux

et al., 2007; Bid and Siddique, 2019), to the best of my knowledge, I am the first to apply NDTI in a

causal inference context for a developing country. To estimate the corresponding effect of mining-induced

water pollution on yields, I identify cropland adjacent to upstream and downstream river segments. I use

downstream cropland as the treated group—representing areas that might be affected by the seepage of water

contaminated with sediment-bound heavy metals or chemicals into surrounding soil or the use of polluted

river water for irrigation—and upstream cropland as the control.

Similarly, I use localized, daily wind direction data to identify cropland exposed to varying levels of air

pollution from mines, proxied by satellite-based measures of aerosol optical density (AOD). I construct a

continuous measure of downwind exposure for each of the four 90-degree sides of the circular buffer around

a mine, corresponding to the cardinal directions that the wind may blow from the mine. For each side,

downwind exposure is defined as the share of days in a month that the wind blows from the mine toward

that direction. This setup allows me to identify treated sides—those downwind more frequently—which will

be exposed to higher levels of pollutants such as particulate matter or sulfur dioxide from mining activities

like drilling, blasting, or smelting. Sides that are downwind less frequently serve as controls. Additionally,

I examine the effects of both contemporaneous and cumulative exposure to air pollution on agricultural
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yields. Contemporaneous exposure refers to when air pollution in the current season affects yields within

that same season, for instance by interfering with plant photosynthesis (Feng and Kobayashi, 2009; Schiferl

et al., 2018). Cumulative exposure additionally accounts for the effects of air pollution in previous seasons

on current yields, such as atmospheric deposition of pollutants changing soil quality over time (Sanders and

Barreca, 2022).

I find evidence that mining activities increase pollution and reduce local yields, with these effects primarily

driven by water pollution. In the upstream vs. downstream DID analysis, I observe that downstream water

turbidity increases by over 12% around the time of a mine opening, relative to water upstream of a mine.

This increase in turbidity coincides with a 3-4% reduction in NDVI for downstream cropland after a mine

opens. The magnitude of this NDVI effect corresponds to a yield reduction of approximately 92 kg/hectare

for the average smallholder farmer. In contrast, while mining increases air pollution in downwind areas by

2-3%, there is no decline in downwind yields. Notably, air pollution levels start to rise about three years

before the official start of commercial production, suggesting that construction and pre-production activities

at the mine site contribute to local pollution. However, even after accounting for both contemporaneous and

cumulative air pollution exposure from mines, there is no significant impact of mining-induced air pollution

on yields in areas with higher downwind exposure, at any point in the mine’s life cycle.

Next, I estimate what share of mining’s total impact on yields—the combined effect of pollution and

input demand shocks—can be attributed solely to pollution using a back-of-the-envelope calculation. For

this exercise, I use a theoretical framework of producer-consumer agricultural households to decompose the

total effect into two components: one that can be observed through the pollution DID estimates and another,

unobserved component driven by input price shocks. To estimate the total effect of industrial mining on

local agricultural output, I use a DID design that compares NDVI in areas near mines to those slightly

farther away, before and after a mine opening. On average, mine openings lead to a statistically significant

1–2% decline in NDVI for areas within 20 kilometers of a mine, with negligible effects detected beyond this

distance. Applying both the total and pollution-specific DID estimates to the decomposition, I find that

pollution externalities account for approximately 44% of mining’s overall impact on agriculture.

Finally, I make a second empirical contribution by identifying the factors that drive variation in mine-

specific treatment effects. My analysis reveals significant heterogeneity in treatment effects across mines,

with the standard deviation of mine-specific treatment effects over ten times greater than expected from a

homogeneous treatment effect with sampling error. In a novel application of machine learning (ML), I inves-

tigate drivers of treatment effect heterogeneity by predicting mine-specific treatment effects given a broad

set of characteristics, including governance indicators, measures of local economic activity, environmental

conditions, mine type, and commodity extracted. The ML model identifies governance measures, such as the
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strength of rule of law and regulatory quality, as the most important factors explaining variation in treatment

effects. I then compare these ML findings to the results from traditional heterogeneity analyses, which use

triple interactions with the dimensions of interest. I demonstrate the value of ML in addressing over-fitting

when there are multiple plausible explanations for heterogeneity. Consistent with the ML model, the stan-

dard analysis confirms that governance quality moderates mining’s impact on local agriculture: mines in

poorly governed areas reduce yields by 2-3 times more than those in better-regulated areas. However, the

standard analysis also reveals other statistically significant dimensions of heterogeneity that the ML model

deems less important.

My paper contributes to three growing literatures. First, it adds to the literature studying the local

impacts of natural resource extraction by measuring direct externalities on existing economic activity . The

discussion of whether natural resources are a blessing or a curse (Sachs and Warner, 2001) has focused heavily

on the effects of natural resource extraction on local economic outcomes, such as sectoral reallocation (Allcott

and Keniston, 2018; James, 2015; Kotsadam and Tolonen, 2016), wealth (von der Goltz and Barnwal, 2019)

and income (Aragón and Rud, 2013), as well issues of corruption and governance (Caselli and Michaels, 2013;

Asher and Novosad, 2023; Mart́ınez, 2023), conflict (Berman et al., 2017) and crime (Axbard et al., 2021).

In a developing country context, our understanding of the effects of natural resource extraction through the

channel of pollution externalities is primarily limited to human health outcomes (von der Goltz and Barnwal,

2019; Benshaul-Tolonen, 2020; Gittard and Hu, 2024) and human capital development (Bonilla Mej́ıa, 2020;

Rau et al., 2015). With the exception of Aragón and Rud (2016), who study the effects of 12 gold mines

in Ghana, there is no other micro-level work quantifying the effects of pollution externalities from natural

resource extraction on local agricultural outcomes in developing countries. I extend this analysis by studying

over 300 commercial mines across Sub-Saharan Africa, isolating the pollution externalities from other local

effects caused by mining, and examining sources of heterogeneity.

Second, my paper contributes to the literature on local structural transformation and agriculture, which

suggests that industrialization drives structural change primarily through sectoral reallocation within small

areas rather than across large distances (Ekert et al., 2023). As Sub-Saharan Africa is home to 30% of the

world’s critical minerals, policymakers argue that the region should take advantage of rising mineral demand

to drive structural transformation (Chen et al., 2024). In fact, it seems that many African governments

are already acting upon this rhetoric by providing tax breaks or other incentives to attract investment from

mining companies (Coulibaly and Camara, 2022). By isolating the effect of pollution externalities from the

effects of raising the returns to inputs in the non-agricultural sector, I can explore the extent to which local

reductions in yields are driven by pollution rather than structural transformation. Huang et al. (2023) and

Kotsadam and Tolonen (2016) both find evidence that mining leads to structural shifts out of agriculture
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into more productive sectors, like low-skilled services. My finding that pollution externalities alone account

for almost half of the effect of mine openings on local yields suggests that we must be wary of interpreting

observed declines in agriculture as evidence purely of structural transformation, especially in the long run.

While long-lasting effects of pollution externalities may persist even after a mine closes, local economic

opportunities may not (Black et al., 2005).

Finally, my paper contributes to an emerging literature that uses remotely sensed outcomes to address

data gaps in developing countries. Existing literature has used NDVI to proxy for crop yields in settings

where plot-level data on self-reported yields or crop cuts are unavailable (Sukhtankar, 2016; Emerick, 2018;

Burke and Lobell, 2017). AOD has been used to overcome similar data gaps for ground-based measures of

particulate matter and other air pollutants (Gendron-Carrier et al., 2022; Xie and Yuan, 2023; Zou, 2021).

By applying the normalized difference turbidity index (NDTI) as a remotely sensed proxy for water quality,

I extend this approach to the context of water pollution and causal inference. This innovation can allow

researchers to answer questions in developing country settings where ground-measured indicators of water

quality are spatially and temporally sparse, or otherwise completely unavailable.

The paper is structured as follows. Section 2 reviews the literature on how mining can generate pollution

and the potential impacts of this pollution on local agriculture. Section 3 introduces a theoretical framework

that distinguishes the effects of mining on agriculture due to pollution externalities from those driven by

input demand shocks. Section 4 provides an overview of the data construction, while Section 5 details the

DID methodology used in the analysis. Section 6 presents the main findings, with Section 7 discussing the

back-of-the-envelope calculation to estimate the proportion of mining’s overall effect on yields attributable

to pollution. Finally, Sections 8 and 9 cover the main robustness checks and heterogeneity analyses. Section

10 concludes.

2 Background

Mining pollution can affect crop yields through shocks that affect the degree to which labor and land inputs

may be used productively. Labor shocks may arise through pollution affecting human health and resulting

labor productivity, which has been documented extensively in the air pollution context (Graff Zivin and

Neidell, 2012; He et al., 2019) but less so for water pollution (Russ et al., 2022). Shocks to land may arise

through channels such as worsening soil quality, direct toxicity of certain pollutants to plant health and

interference with plant growth processes. The following section provides background information on how

mining pollution can affect yields through the plant health and soil quality channels.
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2.1 Mining, Air Pollution and Crop Yields: The technologies employed by large-scale min-

ing operations can contribute to air pollution in a variety of ways. First, metal smelting and refining produces

gaseous emissions, such as carbon dioxide, sulfur dioxide, and nitrogen oxide, as well as particulate matter

and heavy metals (Dudka and Adriano, 1997). Second, activities such as blasting, crushing, stockpiling,

loading and transportation of mine rocks also release large amounts of dust (Petavratzi et al., 2005). This

dust contributes to fine particulate matter and heavy metal levels in the atmosphere. While both under-

ground mining and surface (also known as open pit) mining can contribute to air pollution, open pit mining

is considered more damaging (Sahu et al., 2015).

Mining-induced air pollution can affect crops through several channels. First, certain air pollutants, such

as ozone and sulfur dioxide, cause visible damage to plant structures (Anand et al., 2022). Second, air

pollutants can interfere with plant photosynthesis, though the direction of the effect depends on the type

and intensity of pollution. Some pollutants, like ozone, consistently reduce yields by limiting photosynthesis

(Feng and Kobayashi, 2009). For other pollutants, such as particulate matter (PM), the effects on yields

are more ambiguous due to competing absorption and scattering effects, which may vary with pollution

intensity (Behrer and Wang, 2024). While PM absorption reduces total solar radiation and diminishes

a plant’s photosynthetic capacity, PM scattering increases the fraction of diffuse light available, which can

enhance plant growth (Schiferl et al., 2018; Burney and Ramanathan, 2014). Similarly, the impact of nitrogen

oxides on crop yields is influenced by atmospheric conditions (Lobell et al., 2022).

In addition to its direct effects on crops, air pollution can degrade soil quality through atmospheric

deposition over time. As dust, heavy metals, and other pollutants from mining activities are released into

the atmosphere, they are carried by the wind and eventually settle on the ground. Some studies suggest that

atmospheric deposition worsens soil quality (Liu et al., 2023), while others find that it can serve as a source

of key nutrient inputs for high-yield crops (Sanders and Barreca, 2022). Given these varied mechanisms, the

effect of mining-induced air pollution on yields could be highly heterogeneous across mines, agro-ecological

zones, and climates.

2.2 Mining, Water Pollution and Crop Yields: Mines can contaminate surface water and

groundwater through multiple pathways. One major source of pollution is acid mine drainage (AMD), which

occurs when water containing acidic sulfides and heavy metals leaches into the soil or nearby water bodies

(Dudka and Adriano, 1997). Additionally, the erosion of mine waste can mobilize particulate-bound heavy

metals, transporting them into rivers and streams as sediments (Que et al., 2024).

Mines may also discharge untreated or partially treated wastewater, introducing high concentrations of

heavy metals and processing chemicals—such as cyanide used in gold extraction—into surrounding water
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systems (Mosai et al., 2024). Although less frequent, catastrophic failures of mine waste storage facilities can

release large quantities of contaminated water, while accidental chemical spills may directly pollute surface

water or infiltrate groundwater (Kossoff et al., 2014).

Importantly, while mining can pollute both surface and groundwater, I focus on surface water contam-

ination because exposure can be clearly defined using river networks. Polluted water may affect cropland

adjacent to rivers either by seepage from contaminated rivers onto neighboring land, movement of river

pollutants through groundwater or use of river water for irrigation.

Mining-induced water pollution can affect crops through several mechanisms. First, elevated heavy metal

concentrations in soil or water can be directly toxic to plants, inhibiting growth (Jeong et al., 2016). Second,

higher sediment levels in water may reduce plant water uptake by either restricting water movement through

the soil or limiting its transfer to plant roots (Ashie et al., 2024). Additionally, acid mine drainage can

degrade soil quality by increasing soil acidity (Choudhury et al., 2017). Finally, the consumption of water

contaminated with heavy metals can lead to adverse health effects, potentially reducing labor productivity

in agricultural communities (Obasi and Akudinobi, 2020).

Like air pollution, water pollution from mines can have both immediate and long-term effects on yields.

However, unlike air pollution, the spatial distribution of water pollution exposure remains relatively stable

over time. While wind direction can shift significantly within a year, dispersing air pollutants in different

directions around a mine, water flow follows a more predictable pattern, consistently exposing the same areas

to contamination.

3 Theoretical Framework

To analyze the impact of mine openings on the agricultural sector, I develop a simplified two-sector Roback-

style model with agriculture and non-agriculture (Roback, 1982). The model considers the case of a single

mine surrounded by a set of households. These households can either use inputs to produce an agricultural

good or sell inputs to the non-agricultural sector, which includes mining as well as additional activities

that support mining operations.1 The two sectors affect each other through shared factor markets, and the

non-agricultural sector may impose pollution externalities on agriculture after the mine opens.

I assume that households are situated in three types of areas: near-exposed areas, near-unexposed areas

and far areas. The supply of land in each area is fixed and labor is supplied by households living in that

area. Households in the near areas are close enough to the mine to be affected by local demand shocks from

1These activities might encompass a mix of non-tradable services (e.g., wholesale and retail trade, food services, entertain-
ment, construction, repair services, and personal care) and relatively non-tradable manufacturing (e.g., brickmaking, metal
fabrication, and carpentry).
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the non-agricultural sectors, whereas households in the far area are not affected. Within the near areas,

I further differentiate between exposed and unexposed areas. Near-exposed areas are located downwind

or downstream from the mine and are therefore affected by air or water pollution resulting from mining

activities. In contrast, near-unexposed areas are situated upwind or upstream, remaining unaffected by such

pollution.

This framework builds on those presented by Hornbeck and Keskin (2015) and Foster and Rosenzweig

(2004), with a key distinction: I assume that labor is freely mobile between sectors, while the total labor

supply within an area remains fixed in the short run. The model captures a theoretical trade-off that arises

with the introduction of a high-return industry, such as mining: the negative impact of industrial pollution on

agricultural earnings versus the increase in non-agricultural earnings driven by input competition. This trade-

off mirrors similar dynamics observed in other contexts, such as the tension between agglomeration spillovers

and increased competition for local inputs following the opening of a large manufacturing plant (Greenstone

et al., 2010). It also parallels the trade-off between agricultural spillovers benefiting the industrial sector and

intensified competition for local labor after an area gains access to a large aquifer (Hornbeck and Keskin,

2015).

For the agricultural sector, households in area a use labor L and land T to produce an agricultural good

whose price is fixed and normalized to one. Households are endowed with labor and land (EL and ET ),

which they can use as input on their farms or sell in input markets (Ls and T s) at prices w and q. They can

also buy additional labor and land (Lb and T b). This means that they choose L and T to maximize profits,

subject to endowment constraints:

max
L,T

Π = fa(Aa, L, T ) + w(EL − L) + q(ET − T )

s.t. Ls − Lb = EL − L

T s − T b = ET − T

(1)

where A is a productivity shifter (total factor productivity - TFP). Equation 1 makes clear that household

profits depend on earnings from both the agricultural and non-agricultural sector.

To explicitly allow for pollution shocks, I let A depend on mining activity, x, such that A = A(x).

For households in exposed areas, I define factor-neutral pollution shocks to agriculture as the case where

A decreases with mining activity: ∂A/∂x < 0. Households in unexposed or far areas do not face mining

pollution shocks so ∂A/∂x = 0. I allow the price of labor and land to be affected by local economic conditions,

such that the supply of labor and land is less than infinitely elastic within an area.

The optimal level of inputs L∗(A,w, q) and T (A,w, q) depends on TFP, wages and land prices. Then,
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the equilibrium level of profits is given by:

Π∗ = fa [Aa(x), L∗(Aa(x), w(x), r(x)), T ∗(Aa(x), w(x), r(x))] +

w(x)(EL − L∗(Aa(x), w(x), r(x))) + r(x)(ET − T ∗(Aa(x), w(x), r(x))

(2)

where I make explicit that TFP, wages and land prices depend on mining activity in the area.

Combining the changes in input costs and pollution, the competing effects of mining on the agricultural

sector can be summarized by considering changes in the initial level of household profits. I consider the

“short run” change in household profits after a mine opens, pollution occurs and the non-agricultural sector

expands, but before population adjusts across areas around the mine. Then, the total derivative of the

household’s short-run profit with respect to a change in mining activity is given by:

dΠ∗

dx
=

(
∂f

∂A
× ∂A

∂x

)
+

∂f

∂L

[
∂L∗

∂A
× ∂A

∂x
+

∂L∗

∂w
× ∂w

∂x
+

∂L∗

∂q
× ∂q

∂x

]
+

∂f

∂T

[
∂T ∗

∂A
× ∂A

∂x
+

∂T ∗

∂w
× ∂w

∂x
+

∂T ∗

∂q
× ∂q

∂x

]
+

∂w

∂x
[EL − L∗]− w

[
∂L∗

∂A
× ∂A

∂x
+

∂L∗

∂w
× ∂w

∂x
+

∂L∗

∂q
× ∂q

∂x

]
+

∂q

∂x
[ET − T ∗]− r

[
∂T ∗

∂A
× ∂A

∂x
+

∂T ∗

∂w
× ∂w

∂x
+

∂T ∗

∂q
× ∂q

∂x

]
(3)

If farmers are price-takers and all factors are paid their marginal product in equilibrium, Equation 3

simplifies to:

dΠ∗

dx
=

(
∂f

∂A

∂A

∂x

)
︸ ︷︷ ︸

(1)

+

(
∂w

∂x
(EL − L∗) +

∂q

∂x
(ET − T ∗)

)
︸ ︷︷ ︸

(2)

(4)

Equation 4 illustrates that the overall effect of a mine opening on short-run profits for a household in a near

area is the sum of two opposing effects. First, for households exposed to the negative pollution externalities

from mining on agriculture, the productivity of all factors decreases. In Equation 4, the effect of a direct

TFP shock on agricultural earnings is captured by the first term. This effect is unambiguously negative

for households in exposed areas because pollution reduces output for a given level of inputs. For example,

pollution might reduce labor productivity or degrade soil quality. Formally, ∂f/∂A > 0 by assumption and

for negative pollution shocks, ∂A/∂x < 0. Households in unexposed areas are not affected by this pollution

shock, as ∂A/∂x = 0, so the first term is unambiguously 0.

The second term captures the effect of mining on earnings from the sale of inputs to the non-agricultural

sector. With labor and land supply fixed in the short run, the opening of a mine increases demand for inputs
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required to support mining and associated activities in the non-agricultural sector. This rise in demand drives

up input prices (∂w/∂x > 0 and ∂q/∂x > 0), which encourages a reallocation of inputs out of agriculture.

Assuming that households are net suppliers of labor and land, these higher prices will unambiguously increase

earnings from the sale of inputs to the non-agricultural sector for households in both exposed and unexposed

areas. Furthermore, agricultural output will decline in both exposed and unexposed areas. However, the

decline in exposed areas will be larger, as it is further exacerbated by the negative effects of pollution on

agricultural productivity.

The model underscores that the total effect of a mine opening on short-run welfare depends critically on

whether households are located in areas exposed to mining pollution. For households in unexposed areas,

mine openings are unambiguously welfare-improving, as higher earnings from the non-agricultural sector

boost profits without any accompanying negative pollution shocks. In contrast, for households in exposed

areas, the welfare impact is theoretically ambiguous. While these households also benefit from higher earnings

in the non-agricultural sector, they simultaneously face pollution shocks that reduce agricultural earnings. If

the loss in agricultural earnings from the negative TFP shock exceeds the gains from higher non-agricultural

returns, households in exposed areas will ultimately be worse off following the mine opening.

In the short run, mining has no effect on the profits of households in far areas. Since these markets are

not integrated with the input markets affected by the mine, they do not benefit from local demand shocks,

meaning ∂w/∂x = 0 and ∂q/∂x = 0. Additionally, being located farther away, these areas are not exposed to

pollution from the mine, so ∂A/∂x = 0. However, in the long run, as labor mobility increases, the expansion

of the mining sector will have less severe negative impacts on agriculture. Increased wages in near areas will

attract labor from far areas, leading to a gradual decline in wages. This reduces the incentive to reallocate

labor out of agriculture, mitigating the competitive pressure on agricultural inputs.

4 Data

To investigate the effect of industrial mining on agricultural output in mining communities, I construct

a panel of mining areas from 2000-2022. I link mine opening dates and spatial buffers around mine geo-

locations, provided by S&P Global Market Intelligence, to remotely sensed measures of pollution, crop yields

and weather variables. The unit of observation in my analysis is a mine-side-month, where a “side” refers to

part of a buffer around a mine. In this section, I briefly explain the construction of the main variables used

in my analysis, with an in-depth discussion left to Appendix 11.2.
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4.1 Mines S&P Global Market Intelligence provides the geo-locations of the centroids of mining oper-

ations for large-scale mines across the world. Appendix Figure 11 shows the geo-locations of the S&P mines

used in my analysis. These centroids are used to construct three different types of spatial buffers, which

define treatment and control areas for my analysis. First, to estimate a “total” effect of mining activity on

yields, I define circular buffers around each mine to distinguish between areas near mines and areas slightly

further away. Areas near mines are more likely to experience the effects of both local demand shocks and

pollution exposure from mining activity, relative to areas further away. I refer to the buffer of radius 20-

kilometers around a mine as the near group, which I assume is the treated area that would be impacted by

both higher returns to inputs outside of agriculture and pollution. I use findings from existing literature to

inform the 20-km cutoff for the spatial extent of local markets around mining areas. Empirical evidence on

commuting distances in urban and rural Africa suggests that areas of 5, 10 or 15 km are likely integrated

markets (Amoh-Gyimah and Aidoo, 2013; Kung et al., 2014; Shafer, 2000). Furthermore, wealth increases

(von der Goltz and Barnwal, 2019) and structural shifts out of agriculture into services (Kotsadam and Tolo-

nen, 2016) are concentrated within 20-km of a mine. To demonstrate that pollution effects are concentrated

close to mines, I estimate a spatial lag model with AOD as the outcome of interest. Appendix Figure 12

shows that AOD increases after mine openings are largest within 20-km of a mine, with smaller, statistically

significant effects persisting up to 60-km away and no statistically distinguishable effects at greater distances.

Second, I buffer river segments near mines to estimate effects of mining-induced water pollution on yields.

I use the HydroRIVERS dataset to identify rivers located in Africa. Each mine within 1 km of a river in this

network is matched to the closest river segment, then the upstream and downstream river segments from the

mine river segment are selected. The upstream and downstream segments are buffered by 1-km on either

side of the river to identify adjacent land that would be affected by water pollution. The choice of a 1-km

buffer is based on contaminant transport modeling from mining areas, which detects sulfates in groundwater

up to 2.5 km away from the polluting source, with up to 1.5 km of horizontal dispersion (Myers, 2016). The

“side” of a mine in the water pollution analysis refers to the upstream or downstream buffer.

Lastly, to estimate the effects of mining-induced air pollution on yields I use slices of circular buffers

around each mine that indicate wind direction from the mine. I start by defining a buffer of radius 60-km

around each mine, chosen based on the AOD spatial lag model shown in Appendix Figure 12. For each mine,

the 60-km buffer is divided into four 90-degree slices representing the cardinal directions that the wind can

blow from the mine centroid, where each of these slices represents a “side” of a mine in the air pollution

analysis. To limit the influence of highly local air pollution effects that would affect all sides of the mine

regardless of wind direction, the circle of radius 5-km around the mine centroid is removed from the 60-km
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buffer, leaving behind a “donut.”

Figure 1 illustrates the three different types of treatment and control areas constructed. The left panel

illustrates the near versus far buffers used to estimate an overall effect of mining on local yields, where areas

within the 20-km buffer are considered treated. The top right panel shows the upstream and downstream

buffers used to estimate the water pollution effect, while the bottom right panel displays the wind direction

buffers used to estimate the air pollution effect.

In line with S&P, I define the start of mining activity, also referred to as the opening of a mine, as the

year that “the mine/plant has been commissioned or has produced its first metal, concentrates, or bulk

commodity at a commercial rate.” Other papers have defined mining activity based on years where a mine

had non-zero output (von der Goltz and Barnwal, 2019; Benshaul-Tolonen, 2020). Although the S&P data

provides yearly production data for some mines, this information is missing or incomplete for many mines

in Africa, meaning activity would need to be imputed. As the S&P data on the start year of commercial

production is more complete, I opt to define mining activity based on this year instead.

Although the S&P mining data covers mostly large-scale mines operated by multinationals or national

governments, my empirical strategy is still able to capture the effects of artisanal, small-scale or illegal mines

operating on the fringes of large-scale operations. As the mine buffers extend beyond the footprint of the

large-scale mine, they should capture areas affected by informal mining. Additionally, event study estimates

shown in Section 6 confirm that increases in remotely-sensed air and water pollution occur around the time

of large-scale mine openings in my data, suggesting that informal operations are not polluting prior to the

start of large-scale mining activity.

4.2 Wind: Wind data for the air pollution analysis is retrieved from the Modern-Era Retrospective

analysis for Research and Applications, Version 2 (MERRA2). MERRA2 is a re-analysis product that

combines satellite imagery with algorithms and atmospheric models. I define monthly downwind exposure

for each of the four 90-degree sides of the mine buffer as the share of days in a month that the wind is

blowing from the mine into that side.

4.3 Satellite-based air pollution: Daily measures of aerosol optical density (AOD) are obtained

from the Moderate Resolution Imaging Spectroradiometers (MODIS) satellites at a 3-kilometer spatial reso-

lution. In brief, AOD is calculated by comparing the light intensity in a particular band against a reference

value and attributing the difference to particulates in the air column. The higher the level of AOD, the

higher the level of air pollution as more light is reflected back by particulates in the atmosphere. Several

studies have shown that AOD is highly predictive of ground-based measures of PM10 and PM2.5. In their
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River Far Near S&P mine
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Figure 1: Treatment and Control Buffers

The figure plots the three different types of treatment and control areas used in the analysis. In each sub-figure,
the yellow circle indicates the centroid of the mining area. The left panel illustrates the near versus var buffers
used to estimate the overall effect of mining on local yields. The dark green inner circle has a radius of 20-km
and is used to define the near group, which is affected by both input demand shocks and pollution externalities
(treated), while the light green outer circle acts as a control. The two sub-figures in the right panel zoom into
the near group, showing the treatment and control areas for the water and air pollution analyses. The top
right panel shows the downstream (treated) and upstream (control) buffers for the river segments around the
S&P mine, while the bottom right panel shows the intensity of downwind exposure (treatment) experienced by
each of the four cardinal directions around the mine, defined by 90-degree slices of a circle.
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preferred specification, Gendron-Carrier et al. (2022) find that one unit of remotely sensed AOD is associated

with about 114 µg/m3 of PM10 measured by a ground-based instrument.

Given MODIS data availability, the air pollution analysis covers 2003 - 2017. From daily AOD rasters, I

construct mean AOD for each mine-side-month by averaging all pixel-days with non-missing AOD readings

that fall within each side of a mine in a given month. I calculate this average monthly AOD using only

data from the Aqua satellite, as the Terra satellite suffers from more missing values due to satellite detection

errors during my time period of interest.

4.4 Satellite-based water pollution While satellite-based measures have been used extensively

to answer causal inference questions related to air pollution (Gendron-Carrier et al., 2022; Gutiérrez and

Teshima, 2018; Chen et al., 2022), to the best of my knowledge, no paper is yet to conduct causal inference

using remotely-sensed measures of water pollution in developing countries.

In this paper, I use the normalized difference turbidity index (NDTI) as a remotely-sensed measure of

water pollution. NDTI uses the spectral reflectance of water pixels to estimate turbidity, which is a measure

of water clarity. Similar to AOD, turbidity measures the amount of light scattered by particles in the water

column. The higher the level of particles in the water, the more light that will be scattered. High turbidity

makes water appear cloudy, muddy or discolored. Turbidity is commonly used as a proxy for total suspended

solids (TSS), a key indicator of water quality (Wetzel, 2001). TSS consists of particles larger than 2 microns

that remain suspended in the water column. Notably, turbidity serves as a reliable proxy for two major

types of water pollutants released by mines: heavy metals and suspended sediment. While dissolved metals

are not visually detectable, heavy metals often adhere to the surface of suspended sediment (Que et al.,

2024). As a result, although turbidity cannot distinguish between suspended particles and heavy metals, it

can still serve as an effective indicator of both types of pollution—assuming that heavy metals are primarily

transported through sediment.

To measure turbidity, NDTI leverages how electromagnetic reflectance is higher in green spectrum than

the red spectrum for clear water (Lacaux et al., 2007; Gardelle et al., 2010). Increased reflectance of the

red spectrum relative to green corresponds to an increase in turbidity (Islam and Sado, 2006). NDTI is

calculated with the red and green spectral bands according to the following formula:

NDTI =
Red−Green

Red + Green

Generally, NDTI ranges from -0.2 to greater than +0.25, where lower (negative) values indicate clear

water and higher (positive) values indicate turbid water (Sharma et al., 2015).
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I use Landsat 7 data from 2000-2022 at a 30-m resolution to calculate daily pixel-level NDTI for river

pixels only, then average across pixel-days within the upstream and downstream river segments for each

mine. In Appendix Table 6, I show that NDTI is highly predictive of ground-measured TSS from the Global

River Water Quality (GRWQ) database. From my preferred specification, a one unit increase in NDTI is

associated with a 887 mg/l increase in ground-measured TSS. Additional details on the calculation of NDTI

and the ground-truthing exercise are covered in Appendix 11.2.

Satellite-based proxies for pollution have an key advantage in that they allow researchers to answer

questions in contexts where ground-based pollution data is unavailable or limited. Importantly, spatial

and temporal gaps in ground-based water pollution data can be even larger than those for air pollution in

developing countries (Virro et al., 2021). While low cost air quality sensors have been deployed in many

African countries, the development and implementation of low cost water quality sensors is in its infancy.

These limitations in ground-based water quality monitoring highlight the value of remotely-sensed measures

of water pollution, which offer an affordable way to track the quality of African water bodies over time.

4.5 Satellite-based yields: I proxy for crop yields using the normalized difference vegetation index

(NDVI), which is strongly correlated with crop productivity and final yields, especially during the growing

season (Panek and Gozdowski, 2021). I calculate daily mean NDVI at the pixel level from 2000 - 2022

using the MODIS MCD43A4 Version 6.1 combined Terra and Aqua product at a 500-m resolution. NDVI

is calculated from the MODIS data using readings of light reflected in the near-infrared and red spectrum.2

Given pixel-level data, I construct my final measures of cropland NDVI for the treatment and control areas

by averaging NDVI across all pixel days identified as cropland by the Global Food Security Support Analysis

Data (GFSAD) within the relevant buffers, for each mine-side-month. I discuss additional details on NDVI

construction in Appendix 11.2 and how measurement error in NDVI might affect my estimates in Appendix

11.12.

4.6 Weather Controls: Local weather conditions influence actual yields, as well as the ability for

satellites to accurately detect these yields (Gendron-Carrier et al., 2022; Heino et al., 2023). I calculate

mine-side-month averages of cloud cover percentage, temperature, precipitation, evapotranspiration, vapor

pressure and wet day frequency using the Climatic Research Unit gridded dataset, available at a 0.5 degree

resolution from Harris et al. (2014). These monthly averages of key weather variables are the main control

variables in my regressions.

2NDVI = NIR−RED
NIR+RED
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4.7 Agricultural Seasons: For each mine, I aggregate daily measures of NDTI, AOD and NDVI

to the monthly level from 2000-2022. Each mine-month is then linked to one of the following agricultural

seasons: planting, early growing, late growing, harvest and non-farm, to investigate whether observed yield

effects differ across seasons. I use the Sacks et al. (2010) global raster dataset on planting and harvesting dates

for maize to define area-specific agricultural seasons. This data is available at a 5 arc-minute (approximately

10 km × 10 km) spatial resolution. I focus on maize as it is one of the primary crops grown in Africa and

has the most complete crop calendar data. Other important crops like cassava or wheat have missing data

across most of Africa and Sacks et al. (2010) caution against using interpolated products. Additional details

on construction of agricultural seasons based on the crop calendar data are covered in Appendix 11.2.

5 Methodology

To estimate the impact of mining on yields, I use a difference-in-difference (DID) design that compares areas

exposed to the effects of mining to unexposed areas, before and after a mine opening:

Ysmt = βExposuresm × Postmt + αsm + λmt +X′
smtΓ+ ϵsmt (5)

where s indexes the side of mine m, t indexes the month and outcome Y is either remotely sensed pollution

(NTDI, AOD) or yields (NDVI). Postmt is a dummy variable equal to 1 after mine m opened, 0 otherwise.

The definition of Exposuresm and side s varies across the three types of analysis: water, air and total. For

water, I define the downstream cropland as exposed and the upstream cropland as unexposed while for air,

areas downwind from a mine more frequently are exposed and areas downwind less frequently are unexposed.

Finally, for estimation of the total effect of mining I define areas within 20-km of the mine as exposed to

both pollution externalities and the effects of input demand shocks, with areas further away considered

unexposed.

I include mine-side fixed effects (α) to control for time invariant unobservables correlated with agricultural

output on each side of a mine, such as soil quality, as well as mine-date fixed effects (λ) to control for mine-

specific trends in outcomes over time. These fixed effects absorb the main effects of Exposure and Post.

Given the mine-side and mine-date fixed effects, β is identified by within-month differences in the change

in pollution or yields among areas exposed and unexposed to the effects of mine openings. Essentially, β

is a weighted average of mine-specific DIDs generated from 40 to over 300 mine openings, where the exact

number of mines used depends on the type of analysis. To address the influence of weather shocks to yields

that vary across sides and time, I control for linear and quadratic terms of mean cloud cover, vapor pressure,
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temperature, precipitation, evapotranspiration and wet days. Standard errors are clustered at the mine level.

Estimating the causal effect of mining on yields requires that the timing and placement of a mine opening

is plausibly exogenous to local changes in NDVI. While the placement of mineral deposits is random, the

discovery of these deposits may depend on a variety of non-random factors, including local governance quality,

business environments, infrastructure access and input prices (Benshaul-Tolonen, 2020). This should not pose

a threat to identification as upstream (upwind) and downstream (downwind) sides of the same mine should

be similarly affected by these non-random factors. Mine-side and mine-year-month fixed effects also help

alleviate endogeneity concerns.

Additionally, I estimate event study and season-specific versions of Equation 5 for all three types of

analysis. For the event study model, I replace the single Postmt dummy with a series of dummy variables

indicating years since the opening of mine m. To isolate season-specific effects on yields, I estimate Equation

5 separately over months in the growing and non-growing seasons.

6 Results

6.1 Mining-induced Water Pollution To estimate the effect of mining-induced water pollution

on yields, I use a DID that compares remotely-sensed water turbidity or NDVI between the upstream and

downstream sides of a mine, before and after a mine opening. I define Exposuresm in Equation 5 to be a

dummy variable equal to 1 if side s is downstream from mine m and equal to 0 if it is upstream. I estimate

Equation 5 over a partially balanced panel of 38 mines within 1 km of a river, where non-missing NDVI is

observed on both the upstream and downstream sides of the mine, for at least 6 months of every year, for

at least 2 years pre- and 2 years post-mine opening.

To demonstrate that mining indeed increases water pollution, I first estimate Equation 5 with the normal-

ized difference turbidity index (NDTI) as the outcome of interest. Since NDTI is calculated over narrowly

defined river pixels, monthly NDTI measures are missing more frequently after masking out low quality

pixels. As a result, I estimate the event study and DID regressions for turbidity over a subset of the mines

used in the NDVI analysis.

Figure 2 shows that on average after a mine opens, downstream river turbidity increases significantly.

Larger increases in turbidity during the growing seasons may be explained by increased precipitation causing

more runoff from mining areas into rivers. Figure 3 reveals a complementary pattern of reductions in NDVI

for downstream cropland after a mine opening, with stronger negative effects during the growing seasons.

Prior to a mine opening, we see evidence of parallel trends between upstream and downstream areas for both
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turbidity and yields.
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Figure 2: Effect of mining on water turbidity (NDTI)

The figure plots coefficient estimates from two separate event study regressions of mean normalized
difference turbidity index on a dummy for whether a side is downstream from a mine interacted
with a series of event time dummies for years since a mine first opened. The unit of analysis is a
mine-side-month, though event time coefficients are binned into yearly increments. The event study
regressions are estimated separately over growing season months (early growing and late growing) and
non-growing season months (planting, harvest and non-farm). The shaded bands show point-wise 95
percent confidence intervals for the coefficients of the event-time path of mean NDTI. Coefficients
can be interpreted as estimated effects relative to the period one year before the mine opened. Both
regressions includes linear and quadratic controls for mean temperature, precipitation, vapor pressure,
wet days, evapotranspiration and cloud cover, as well as mine-side and mine-year-month fixed effects.
Standard errors are clustered at the mine level. The sample includes the 30 mines for which non-
missing NDTI is observed on the upstream and downstream sides for at least 2 months in each year,
for at least 2 years pre- and 2 years post-mine opening. Event times less than -2 or greater than 2 are
binned into two end points.
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Figure 3: Effect of mining-induced water pollution on yields (NDVI)

The figure plots coefficient estimates from two separate event study regressions of mean NDVI on a
dummy for whether a side is downstream from a mine interacted with a series of event time dummies
for years since a mine first opened. The unit of analysis is a mine-side-month, though event time
coefficients are binned into yearly increments. The event study regressions are estimated separately
over growing season months (early growing and late growing) and non-growing season months (plant-
ing, harvest and non-farm). The shaded bands show pointwise 95 percent confidence intervals for
the coefficients of the event-time path of mean NDVI. Coefficients can be interpreted as estimated
effects relative to the period one year before the mine opened. Both regressions includes linear and
quadratic controls for mean temperature, precipitation, vapor pressure, wet days, evapotranspiration
and cloud cover, as well as mine-side and mine-year-month fixed effects. Standard errors are clustered
at the mine level. The sample includes the 38 mines for which non-missing NDVI is observed on the
upstream and downstream sides for at least 6 months in each year, for at least 3 years pre- and 3 years
post-mine opening. Event times less than -3 or greater than 3 are binned into two end points.

19



Table 1 presents the main results for remotely sensed turbidity and yields, estimated on all months pooled

together, as well as separately by growing and non-growing seasons. Panel A consistently shows that mining

increases remotely sensed water turbidity, though these estimates are statistically insignificant, likely due to

lack of power. The increase in turbidity is on the magnitude of 12-50% relative to NDTI in the pre-period.

I cautiously interpret these results as evidence that mining increases water pollution, though some of this

effect may be attributed to increases in non-harmful sediment as well. Using Column 2 of Appendix Table 6

to convert NDTI to total suspended solids suggests that on average, mine openings increase total suspended

solids in downstream water by 4.33 - 4.83 mg/l.

The resulting effects of mining-induced water pollution on yields in Panel B show consistent and statis-

tically significant reductions in remotely sensed yields in downstream areas relative to upstream areas, after

a mine opens. These estimates correspond to a 3-4% drop in NDVI, with larger effects observed during

months in the growing season.

Table 1: Relationship Between Industrial Mine Openings, Remotely-Sensed Water Turbidity and Crop Yields

(1) (2) (3)

All seasons Growing Non-growing

Panel A: Turbidity (NDTI)
Downstream × Post 0.00488 0.00426 0.00544

(0.00649) (0.00761) (0.00636)
Mines 30 30 30
Observations 11,330 5,304 6,026
Mean NDTI (t-1) .01 -.01 .04

Panel B: Yields (NDVI)
Downstream × Post –0.01404** –0.01770** –0.01093**

(0.00587) (0.00714) (0.00531)
Mines 38 38 38
Observations 20,518 9,888 10,630
Mean NDVI (t-1) .47 .54 .39

Mine-side FE Yes Yes Yes
Mine-year-month FE Yes Yes Yes
Weather Yes Yes Yes

Notes: Each column reports the results of a linear regression. The unit of analysis is a mine-side-month. In Panel A, the
dependent variable is the mean normalized difference turbidity index (NDTI) of the river water on the upstream or downstream
side of a mine, in a given month. I derive remotely sensed turbidity from Landsat 7. In Panel B, the dependent variable
is the mean normalized difference vegetation index (NDVI) of the cropland within the 1km buffer along the river on either
the upstream or downstream side of a mine, in a given month. I derive remotely sensed yields from the MODIS Combined
Terra and Aqua product (MCD43A4.061). Downstream is equal to 1 if the side is downstream from the mine and 0 if it is
upstream from the mine. Post is equal to 1 after the mine opened, 0 otherwise. All models include linear and quadratic controls
for mean temperature, precipitation, vapor pressure, wet days, evapotranspiration and cloud cover, as well as mine-side and
mine-year-month fixed effects. For turbidity, the sample includes the 30 mines for which non-missing NDTI is observed on the
upstream and downstream sides for at least 2 months in each year, for at least 2 years pre and 2 years post-mine opening. For
yields, the sample includes the 38 mines for which non-missing NDVI is observed on the upstream and downstream sides for
at least 6 months in each year, for at least 3 years pre and 3 years post-mine opening. Column 1 reports results estimated
by pooling months over all 5 seasons: planting, early growing, late growing, harvest and non-farm. Column 2 reports results
estimated only over months in the early growing and late growing seasons and Column 3 reports results estimated only over
months in non-growing seasons: planting, harvest and non-farm. Standard errors in parentheses are clustered by mine.

20



To understand the extent to which water pollution may be affecting local crop yields through irrigation,

I estimate Equation 5 using only NDVI over irrigated cropland as the outcome of interest. The GFSAD

cropland extent data classifies cropland pixels as rain-fed or irrigated, allowing me to to identify cropland near

rivers that may be negatively affected by the use of polluted water during irrigation. Appendix Table 28 shows

that estimated reductions in NDVI due to mining are about 25% larger for irrigated downstream cropland

compared to non-irrigated areas, suggesting that irrigation with polluted water is indeed an important

channel through which mining-induced water pollution may affect local yields.

6.2 Mining-induced Air Pollution To identify areas near mines that are disproportionately

exposed to air pollution, I rely on the assumption that wind blows pollutants from the mine towards the

downwind side of the mine. I apply high-frequency data on wind direction and the staggered openings of

over 100 large-scale mines in two methods that estimate the effect of mining-induced air pollution on local

yields: (1) a DID and event study that primarily capture the effects of contemporaneous exposure to air

pollution and (2) a distributed lag model that allows for cumulative effects of prolonged exposure to air

pollution.

6.2.1 Contemporaneous effect: The model capturing contemporaneous effects of mining-induced air

pollution on local yields uses a continuous measure of Exposure in Equation 5, defined as the share of days

in month t that side s is downwind from mine m. In this way, a one unit increase in Exposure corresponds

to moving from a side never being downwind from a mine to a side being downwind for the entire month.

Aside from the definition of Exposure, the air pollution specification differs from the one used in the water

pollution analysis in a few ways. First, unlike direction of water flow, wind direction varies substantially

over time, so Exposure in Equation 5 varies across mines, sides and time. This means that the Exposure

main effect is not absorbed by the mine-side and mine-year fixed effects. Additionally, I control for average

wind speed experienced by each side of the mine in a given month.

To establish that mining activity increases air pollution, I estimate the air version of Equation 5 using

mean AOD as the outcome of interest. Unlike the NDVI data, the AOD data is available only for 2003-2017

and has more missing values due to errors in AOD detection from cloud cover. To ensure a consistent sample

of mines between the NDVI and AOD regressions, I use a partially balanced panel of 102 mines, where each

mine must be observed on all sides for at least 4 months of every year, for at least 5 years pre- and 5 years

post-mine opening. I additionally control for the number of non-missing pixel days used to construct mean

monthly AOD to address measurement error in AOD,

The AOD event study in Figure 4 reveals that on average, sides of a mine that are downwind more
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frequently experience higher levels of AOD after a mine opening. This increase in AOD begins about 3 years

before the mine officially starts commercial production. Prior to this 3-year period before a mine opens, we

see evidence of parallel trends between areas with high downwind exposure and areas with low downwind

exposure.
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Figure 4: Effect of mining on air pollution (AOD)

The figure plots coefficient estimates from a regression of mean AOD on the share of days in a month
that a side is downwind from a mine, interacted with a series of event time dummies for years since
a mine first opened. The unit of analysis is a mine-side-month, though event time coefficients are
binned into yearly increments. The shaded bands show pointwise 95 percent confidence intervals for
the coefficients of the event-time path of mean AOD. Coefficients can be interpreted as estimated
effects relative to the period three years before the mine opened. The regression includes linear and
quadratic controls for mean temperature, precipitation, vapor pressure, wet days, evapotranspiration
and cloud cover, as well as mine-side fixed effects, mine-year-month fixed effects, mean wind speed and
a linear control for the number of non-missing pixel days used to calculate mean AOD. The sample
includes the 102 mines for which non-missing AOD is observed on all 4 sides of the mine, for at least
4 months in each year, for at least 5 years pre- and 5 years post-mine opening. Event times less than
-5 or greater than 5 are binned into two end points.

Why would air pollution occur before a mine officially starts producing? To answer this question, it is

helpful to reconceptualize mining activity as a gradual ramp up over time rather than a binary “on/off.”

Detailed work histories of the mines in the S&P database provide evidence in support of this gradual increase

in activity. S&P roughly classifies mining activity into the following phases: discovery, exploration/feasibility

study, construction/pre-production, production and closure. The discovery phase describes the time at which

mineral potential was first determined in a mining area. Exploration and feasibility studies encompass activi-
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ties such as drilling and testing, which are used to estimate the quality and quantity of reserves. Construction

and pre-production include activities related to the building of infrastructure needed for large-scale mineral

extraction (e.g. roads, electricity grid, buildings). Production refers to industrial-level extraction and pro-

cessing of raw materials. Closure refers to the permanent shut-down of a mine and the associated reclamation

activities that are supposed to return the land to its previous state.

It is not unreasonable to observe increased air pollution in downwind areas prior to the official start of mine

production. Literature estimating emissions rates from different activities at a mine site suggests that air

pollutants are most likely to be released during the exploration, construction/pre-production and production

phases (Patra et al., 2016). In particular, the use of heavy machinery or vehicles during exploration, as well

as the clearing of overburden or construction may contribute to local air pollution levels before the official

start of production.

To better understand the polluting effects of the different phases of a mine’s life cycle, I use satellite data

to estimate a structural break in the mean of remotely sensed nighttime light intensity for each mine that

opened between 2003 and 2012 using the methods of Andrews (1993) and Andrews and Ploberger (1994).3

I hypothesize that the construction of infrastructure in mining areas would dramatically increase nightlights

and so interpret the structural break in nightlights as aligning with the construction/pre-production phase.

Additional details on the structural breaks estimation procedure are covered in the Appendix 11.10.

For the average mine, I find that a structural break in nightlights occurs about 3 years prior to the S&P

start date of commercial production. This is similar to Benshaul-Tolonen (2020), who also uses nightlights

to demonstrate an “investment phase” of mining activity occurring 2 years before the start of production.

In addition, this finding supports Figure 4, which shows that increases in air pollution begin about 3 years

before mines start producing. I cautiously interpret this result as evidence that air pollutants generated

during the construction and pre-production phase of a mine are major drivers of local air pollution from

mines.

Although we observe increases in air pollution around the time of a mine opening, the event study

in Figure 5 reveals no economically or statistically significant effects of contemporaneous exposure to air

pollution on NDVI in either the growing or non-growing seasons, at any point in a mine’s life cycle.

The event study findings for both AOD and NDVI are supported by the DID estimates in Table 2. After

establishing that mining starts to increase air pollution in downwind areas during the investment phase,

about 3 years before official production begins, I redefine the Post dummy in Equation 5 to be equal to 1 for

years after the start of the investment phase. I use this definition of (Post − 3) when estimating the effect

3In 2013 there was a switch from the DMSP OLS to the VIIRS instrument as the source of nightlights. Since this switch
introduced an artificial break in nightlights in 2013, I only estimate structural breaks for mines that opened prior to 2013.
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Figure 5: Effect of contemporaneous mining-induced air pollution on yields (NDVI)

The figure plots coefficient estimates from two separate event-study regressions of mean NDVI on the
concurrent share of days in a month that a side is downwind from a mine, interacted with a series of
event time dummies for years since a mine first opened. The unit of analysis is a mine-side-month,
though event time coefficients are binned into yearly increments. The regressions are estimated sepa-
rately over growing season months (early and late growing) and non-growing season months (planting,
harvest and non-farm). The dotted lines show pointwise 95 percent confidence intervals for the co-
efficients of the event-time path of mean NDVI. Coefficients can be interpreted as estimated effects
relative to the period three years before the mine opened. The regression includes linear and quadratic
controls for mean temperature, precipitation, vapor pressure, wet days, evapotranspiration and cloud
cover, as well as mine-side, mine-year-month fixed effects and mean wind speed. The sample includes
only the 102 mines for which non-missing NDVI and AOD is observed on all 4 sides of the mine, for
at least 4 months each year, for at least 5 years pre- and 5 years post-mine opening. Event times less
than -5 or greater than 5 are binned into two end points.
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of contemporaneous air pollution on remotely sensed yields in mining areas.

Panel A of Table 2 shows that relative to sides a mine that are downwind less frequently, sides of a mine

that are downwind more frequently experience about a statistically significant increase in AOD after the

“investment” phase of a mine begins. The magnitude of this effect is equivalent to roughly a 2% increase

and is larger when focusing only on strongly treated cases: mine-months where the side that is downwind

from the mine most frequently experiences at least 20 days of wind exposure from the mine in a month.

In contrast, Panel B shows no economically or statistically significant effect of contemporaneous air

pollution on NDVI. To better understand these effects, I estimate mine-specific DIDs for the impact of

mining on AOD and NDVI using the same set of mines used in the analysis above. Appendix Figure 18 plots

the AOD DIDs against the NDVI DIDs for each mine, revealing a non-linear relationship between AOD and

NDVI. While small increases in AOD increase yields, larger increases lead to yield reductions. This aligns

with literature documenting that local pollution regimes, such as the extent to which the scattering versus

absorbing effect of particulate matter dominates (Schiferl et al., 2018; Burney and Ramanathan, 2014),

atmospheric conditions (Lobell et al., 2022) or intensity of pollution (Behrer and Wang, 2024), can moderate

air pollution effects on yields.

6.2.2 Cumulative effect: Importantly, the DID and event study designs outlined above are limited in

that they primarily estimate the effect of contemporaneous air pollution exposure on yields. This is because

the mine-side and mine-date fixed effects ensure a comparison of sides of the same mine, within the same

time period, which does not account for pollution exposure in prior time periods. Due to seasonality in

winds, the side of a mine that is most frequently downwind varies within the year. This means that the

downwind exposure of a given side in one month may not necessarily be similar to that side’s exposure in

prior months.

To overcome this limitation, I estimate a distributed lag version of Equation 5:

Ysmt =

P∑
p=0

βpExposuresm,t−p +

P∑
p=0

δpExposuresm,t−p × Postm,t−p + αsm + λmt +X′
smtΓ+ ϵimt (6)

where Exposuresm,t−p is downwind exposure on side s of mine m, p months before t. Downwind exposure

is defined as the number of days a side is downwind from the mine, normalized so that one unit corresponds

to being downwind for 30 days. Postm,t−p is an indicator for when production first began at mine m, lagged

by p months. By interacting lagged wind exposure with a lagged indicator for mining activity, I ensure that

only wind exposure in the months after a mine opening is included in the cumulative effect estimated for
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Table 2: Relationship Between Industrial Mine Openings, Remotely-Sensed Air Pollution and Crop Yields

(1) (2) (3)

All 20+ days downwind 25+ days downwind

Panel A: Air Pollution (AOD)
Wind × (Post - 3) 0.00403*** 0.00443*** 0.00601***

(0.00147) (0.00158) (0.00212)
Mines 102 102 71
Observations 72,596 31,384 16,852
Mean AOD (t-3) .22 .22 .22

Panel B: Yields (NDVI)
Wind × (Post - 3) 0.00028 0.00061 0.00009

(0.00146) (0.00140) (0.00158)
Mines 102 102 71
Observations 72,596 31,384 16,852
Mean NDVI (t-3) .49 .49 .49

Mine-side FE Yes Yes Yes
Mine-year-month FE Yes Yes Yes
Weather Yes Yes Yes

Notes: Each column reports the results of a linear regression. The unit of analysis is a mine-side-month. In Panel A, the
dependent variable is mean aerosol optical depth (AOD) for one of the four sides (N,S, E, W) of a mine within a 60km buffer,
in a given month. I derive AOD from the MODIS Aqua Level 2 Daily product (MYD04 3K). In Panel B, the dependent
variable is mean normalized difference vegetation index (NDVI) for one of the four sides of a mine within a 60km buffer, in a
given month. I derive remotely sensed yields from the MODIS Combined Terra and Aqua product (MCD43A4.061). Wind is
defined as the share of days in a month that a side is downwind from the mine. Post - 3 is equal to 1 after the investment
phase of a mine, which occurs 3 years before the mine opened, 0 otherwise. All models include linear and quadratic controls
for mean temperature, precipitation, vapor pressure, wet days, evapotranspiration and cloud cover, as well as mine-side fixed
effects, mine-year-month fixed effects and mean wind speed. The sample includes the 102 mines for which non-missing AOD
and NDVI are observed on all four sides of the mine for at least 4 months in each year, for at least 5 years pre and 5 years
post-mine opening. Column 1 reports results from a model estimated over all mine months while Column 2 (3) subsets to only
mine-months where the side that is downwind most frequently receives at least 20 (25) days of wind from the mine. Standard
errors in parentheses are clustered by mine.
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the post period. Aside from including the lagged exposure terms, Equation 6 is identical to the version of

Equation 5 used to estimate the effect of contemporaneous air pollution on yields.

Before a mine opening, the cumulative effect of exposure to air pollution during the current month

and the P months prior is
∑P

p=0 βp. The cumulative effect of pollution exposure after a mine opening is∑P
p=0 βp + δp. Thus, we can interpret

∑P
p=0 δp as the difference in the cumulative effect of exposure to air

pollution during the current and P prior months, between the pre- and post-mine opening periods. Standard

errors, p-values and confidence intervals for each lag structure are obtained by testing whether
∑P

p=0 δp = 0,

for each P. In my main specification, I include lagged months up to 2 years prior (24 months) so estimate

25 total coefficients (1 contemporaneous and 24 lagged).

To estimate the distributed lag model, I define a different sample of mines from the set used in the AOD

and contemporaneous yield effect estimation shown in Table 2. First, I expand the set of mines to include

those where AOD data may be missing or incomplete for certain months, as estimating the coefficients on

the main effects and interaction terms for each of the lagged variables in Equation 6 is computationally

demanding. Second, I restrict to only the set of mines where NDVI is observed on all four sides, for all 12

months of every year, for at least 5 years pre- and 5 years post-mine opening. This ensures that NDVI for

each mine-side-month is observed for all lags included in the main specification, so that the composition of

mines does not vary with the lag structure.

Pooling all seasons together, Figure 6 reports point estimates and 95 percent confidence intervals for the

cumulative effect of lagged and concurrent pollution exposure, proxied by days of wind downwind from a

mine. Along the horizontal axis, I increase the maximum response delay from P = 1 to P = 24 months,

estimating a separate distributed lag model for each lag increment. On the vertical axis, I report the NDVI

effect for a +30 day increase in wind sustained over the P + 1 preceding and concurrent months. For example,

at P = 12 lagged months on the horizontal axis, Figure 6 reports the pre-post difference in cumulative effects,∑12
p=0 δp, of a sustained 30 day increase in wind from a mine on NDVI over the prior 12 months and the

current month. For interpretation, I normalize the coefficients using mean NDVI from 3 years before a

mine opens. Appendix Table 7 presents the coefficients, standard errors and p-values for each of the lag

increments. On average, I find no effect of cumulative mining-induced air pollution on NDVI in downwind

areas, both when pooling all months (Figure 6) as well as when estimating the model separately by growing

and non-growing seasons (Appendix Figure 14).

Importantly, these average treatment effects for both contemporaneous and cumulative air pollution

exposure from mines mask substantial heterogeneity. For instance, Appendix Table 13 Column 2 shows

that downwind areas near open pit mines experience a small but statistically significant reductions in NDVI

due to contemporaneous mining-induced air pollution exposure. This aligns with literature suggesting that
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open pit mines tend to pollute more than underground mines (Sahu et al., 2015). Other dimensions of

heterogeneity are discussed in more detail in Section 9.
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Figure 6: Effect of cumulative exposure to mining-induced air pollution on yields (NDVI)

The figure plots the cumulative impact on mean NDVI of +30 days of downwind exposure to air
pollution from a mine in each of the concurrent and previous P months. Each value reports the point
estimate and 95 percent CI on

∑P
p=0 δp from a different distributed lag model, as I increase P along

the horizontal axis.
∑P

p=0 δp can be interpreted as the average difference in cumulative effects of air
pollution on NDVI between the pre and post period, where the post period is defined as the time
period after a mine opens. The sample includes the set of 219 mines with non-missing NDVI data
observed on all 4 sides, for all 12 months in each year, for at least 5 years pre- and 5 years post-mine
opening. Each distributed lag model is estimated using mine-side-months observed after the time
period 3 years before a mine first opens, to ensure that lagged wind exposure is observed for at least
2 years before the current month. Each distributed lag model is estimated over months in all seasons.
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7 Quantifying Results

In this section, I perform two quantification exercises to better interpret my results. First, I use a back-of-

the-envelope calculation to estimate the proportion of industrial mining’s total impact on local agricultural

output that can be attributed solely to pollution. Second, I convert the estimated treatment effects from

NDVI units into crop yields, expressed in kilograms per hectare.

7.1 Estimating Share of Effect on Yields Attributed to Pollution To compare the

relative contributions of pollution externalities and increasing returns to inputs outside of agriculture in

explaining mining’s impact on agricultural output, I would ideally estimate the causal effects of mine openings

on local input prices and agricultural input use. This would require data on wages, land prices, household

labor hours in agriculture, and the amount of land used for farming—data that is unavailable for households

near mines in Sub-Saharan Africa. To address this limitation, I perform a back-of-the-envelope calculation

using the theoretical framework developed in Section 3 to decompose what I refer to as the “total” effect of

mining on agricultural output into two components: the impact of pollution and the effect of changing input

prices.

For this calculation, I estimate the total effect of mining on agriculture using a DID approach, comparing

remotely sensed yields in areas within 20 km of a mine to those farther away, before and after a mine opening.

To back out the share of the total effect that can be attributed solely to pollution, I apply my DID estimates

of both the total effect of mining on yields and the effect of mining-induced water pollution on yields to the

decomposition.

7.1.1 Estimating the “total” effect To estimate a “total” effect of industrial mining on agricultural

output that captures both pollution and input demand shocks, I use the staggered openings of 307 mines

across Sub-Saharan Africa in a DID that compares NDVI between areas near mines to areas further away,

before and after a mine opening. I define Exposure in Equation 5 as a dummy variable equal to 1 for

cropland within 20-km of a mine and 0 for the ring between the buffer of 100 km and the buffer of 150 km

away from the mine, where these comparison groups are chosen based on a spatial lag model. Appendix

Figure 13 shows that the largest reduction in NDVI occurs within 20 kilometers of a mine, with smaller

reductions in NDVI occurring between 20-60 kilometers of a mine and no statistically significant effect at

distances greater than 100 kilometers.4 In Section 4, I discuss evidence suggesting that pollution and local

market effects are concentrated within 20-km of the mine.

4In the spatial lag model, the omitted category is the 100-150km ring.
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Table 3 shows that on average, mine openings lead to a statistically significant decrease in NDVI of about

1.5% in areas near mines relative to areas further away, with slightly larger effects in the growing season.

Table 3: Overall effect of mine openings on NDVI - both pollution and input demand shocks

(1) (2) (3)
Pooled Growing only Non-growing only

Near × Post -0.00638∗∗∗ -0.00691∗∗∗ -0.00589∗∗∗

(0.000980) (0.000990) (0.00108)
Number of mines 307 307 307
Obs. 168626 80582 88044
Mine-side FE Yes Yes Yes
Mine-year-month FE Yes Yes Yes
Weather Yes Yes Yes
Mean NDVI (t-1) .476 .543 .415

Each column reports the results of a linear regression. The unit of analysis is a mine-side-month. The dependent variable is
mean NDVI within a side (near or far), in a given month. Near is equal to 1 for the area within the 20-km buffer around the
mine and equal to 0 for the area in the ring between the buffers of 100-km and 150-km. Post is equal to 1 after the mine
opened, 0 otherwise. All models include linear and quadratic controls for mean temperature, precipitation, vapor pressure, wet
days, evapotranspiration and cloud cover, as well as mine-side and mine-year-month fixed effects. The sample includes the 307
mines for which non-missing NDVI is observed in both distance groups for at least 4 months in each year, for at least 3 years
pre- and 3 years post-mine opening. Column 1 reports results estimated by pooling months over all 5 seasons: planting, early
growing, late growing, harvest and non-farm. Column 2 reports results estimated only over months in the early growing and
late growing seasons and Column 3 reports results estimated only over months in non-growing seasons: planting, harvest and
non-farm. Standard errors in parentheses are clustered by mine.

7.1.2 Decomposing the total effect To decompose the total effect of mining on agricultural output, I

rely on the agricultural production function defined in Section 3, which defines the optimal level of output

of the agricultural good produced by household i, yi, as a function of labor L, land T and total factor

productivity A:

y∗i = f(Ai(x), L
∗(Ai(x), w(x), q(x)), T

∗(Ai(x), w(x), q(x))) (7)

where w and q are the wage and land price, respectively.

I assume that households are located around a single mine, and observed at two time points: before and

after the mine opens. Letting x define a mine opening, the total change in agricultural output between the

pre- and post-mining period for household i can be expressed as
dy∗

i

dx = y∗i,post − y∗i,pre.

Since my results indicate that water pollution is the primary driver of mining pollution’s impact on

agriculture, I only consider the polluting effect of mines via water in the back-of-the-envelope calculation.

As such, I define households as being located in one of three types of areas: those that are far from the mine

(more than 20 km, i ∈ F ), those that are near the mine (within 20 km) and located downstream (i ∈ D),

and those that are near the mine but located upstream (i ∈ U). The total number of households within 20

km of the mine, NNear, is the sum of the number of households located downstream of the mine, ND, and
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upstream of the mine, NU .
5

After a mine opens, wages and land prices will increase in areas near the mine (∂w/∂x > 0 and ∂q/∂x >

0). Households in far areas are not integrated into the input markets affected by the mine so experience no

changes in input prices (∂w/∂x = 0 and ∂q/∂x = 0). Additionally, total factor productivity (TFP) will fall

for households in downstream areas near the mine (∂Ai/∂x < 0), with no effect on upstream areas near the

mine or areas far from the mine (∂Ai/∂x = 0). This implies that the total change in agricultural output

following a mine opening depends on the household’s location relative to the mine and can be expressed as

follows:

dy∗i
dx

=



0 if i far (i ∈ F )

∂w
∂x

(
∂f
∂L∗

i

∂L∗
i

∂w + ∂f
∂T∗

i

∂T∗
i

∂w

)
+ ∂q

∂x

(
∂f
∂L∗

i

∂L∗
i

∂q + ∂f
∂T∗

i

∂T∗
i

∂q

)
if i upstream (i ∈ U)

∂Ai

∂x

∂f

∂Ai︸ ︷︷ ︸
(1)

+
∂Ai

∂x

(
∂f

∂L∗
i

∂L∗
i

∂Ai
+

∂f

∂T ∗
i

∂T ∗
i

∂Ai

)
︸ ︷︷ ︸

(2)

+

∂w

∂x

(
∂f

∂L∗
i

∂L∗
i

∂w
+

∂f

∂T ∗
i

∂T ∗
i

∂w

)
+

∂q

∂x

(
∂f

∂L∗
i

∂L∗
i

∂q
+

∂f

∂T ∗
i

∂T ∗
i

∂q

)
︸ ︷︷ ︸

(3)

if i downstream (i ∈ D)

(8)

Equation 8 illustrates that mine openings affect the agricultural output of households in downstream

areas through three channels: (1) direct shocks to TFP, (2) input adjustments in response to the TFP shock,

and (3) changes in input prices. In contrast, the output of households in upstream areas is affected solely

by changes in input prices, while households in far areas experience no change in output.

I link changes in output at the household level to β̂W , the DID estimate from the water pollution analysis,

as follows:

5For simplicity, I assume there are no households within the 20-km buffer that fall outside of the upstream and downstream
areas. This is equivalent to assuming that the 20-km near buffer is divided into two mutually exclusive sections: an upstream
area and a downstream area. The key findings of the back-of-the-envelope calculation remain consistent even if households exist
outside of the upstream and downstream areas but within the 20-km buffer.

31



β̂w = (ȳDpost − ȳDpre)− (ȳUpost − ȳUpre)

=
1

ND

∑
i∈D

(
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)
− 1
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(9)

Similarly, I link the DID estimate of the total effect of mining on agriculture, β̂T , to the changes in

household output shown in Equation 8 as follows:

β̂T = (ȳNear
post − ȳNear

pre )− (ȳFpost − ȳFpre)
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(2)

(10)

where α is the share of households near the mine that are downstream. Equation 10 demonstrates how the

DID estimate for the total effect of mining on yields can be decomposed into (1) an observed component, the

DID estimate for the effect of mining-induced water pollution on yields (scaled by the share of near buffer

exposed to water pollution) and (2) an unobserved component, the effect of input price shocks on yields.
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7.1.3 Estimating the pollution share From Equation 10, the share of mining’s total impact on agri-

cultural output attributable to pollution can be approximated as αβ̂W /β̂T . To estimate this share, I assume

α = 0.17, corresponding to the 25th percentile of the share of the 20-km buffer that lies at a lower elevation

than the mine—areas more likely to be affected by water flow from the mine—across all mines located within

1 km of a river.

Applying the DID estimates of β̂W = −0.0177 (Table 1) and β̂T = −0.00691 (Table 3, Column 2),

to the decomposition in Equation 10, I find that pollution accounts for 44% of mining’s overall effect on

agricultural yields. The remaining 56% is attributed to output adjustments driven by wage and land price

shocks, reflecting increased competition for inputs from mining and the expansion of sectors supporting

mining operations. This back-of-the-envelope calculation suggests that we should be cautious in interpreting

agricultural decline following the introduction of a high-return sector like mining as purely a sign of positive

structural transformation. Nearly half of the decline in agricultural output is driven by pollution, rather

than shifts in labor or land allocation driven by higher prices in the non-agricultural sector.

7.2 Translating NDVI Effects to Yield Effects To map NDVI effects to yield effects, I

estimate the correlation between actual maize yields from plots of smallholder farmers across Africa and

NDVI local to these plots. Data on maize yields, defined in kilograms of maize produced per hectare, are

obtained from Aramburu-Merlos et al. (2024). This dataset covers over 13,000 smallholder farms across 7

countries: Burundi, Uganda, Nigeria, Tanzania, Kenya, Rwanda and Zambia. It is a repeated-cross section,

where measurements are taken over the 2016-2022 time period from different plots located in similar areas.

The data from Aramburu-Merlos et al. (2024) was collected by One Acre Fund, an NGO that provides

smallholder farmers with access to credit, training, crop insurance and farming supplies. Maize yields for

each farmer at the time of harvest were measured in two randomly spaced boxes of 36 square meters, avoiding

field edges. While farm size is not provided in the public data of Aramburu-Merlos et al. (2024), African

agriculture is dominated by small farms, typically defined as less than 1 acre (Carletto et al., 2015).

To link plot-level yields to NDVI, I define a grid of 1km x 1km cells over the study areas in Aramburu-

Merlos et al. (2024). Each plot is linked to a grid-cell using plot GPS coordinates. I opt for the 1km x

1km grid cell to limit the influence of inaccuracies in plot coordinates (Jin et al., 2017). While I do not

observe the same plots over time, most grid cells can be observed for at least 2 different years. For each

grid cell, I calculate mean NDVI across pixels falling within the cell for each season from 2016-2022. Mean

seasonal NDVI at the cell-year level is then linked to the average of observed yields across all plots in the

corresponding cell-year.

I run the following regression to estimate the relationship between remotely-sensed yields and actual
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yields measured from One Acre Fund cropcuts, separately for each season:

Y ieldct = αc + λt + βNDV INDV Ict +X′
ctΓ+ ϵct (11)

where Y ieldct is mean maize yields in kg/ha across all plots in cell c in year t and NDV Ict is mean

NDVI in one of the five seasons. I include grid-cell and year fixed effects, as well as cell-level controls for

the average number of maize growing degree days, average precipitation over the maize season and average

temperature over the maize season from Aramburu-Merlos et al. (2024), across all plots within a cell-year. I

also include cell-level weather variables, such as mean cloud cover and evapotranspiration from Harris et al.

(2014). NDV Ict is scaled so that βNDV I reflects the effect of a 0.01 unit increase in NDVI on maize yields.

Inclusion of weather controls and fixed effects help limit omitted variable bias due to NDVI detection errors.

Table 4 shows that on average, a 0.01 unit increase in NDVI is associated with a statistically significant

52.10 kg/ha increase in maize yields during the early growing season, with smaller increases in other seasons.

This is supported by existing literature, which also finds that NDVI is a strong predictor of yields specifically

during the early stages of growing (Panek and Gozdowski, 2021). Linking this result to the overall effect

of mining on NDVI of -0.00691 suggests that on average, industrial mining reduces actual yields for a

smallholder farmer by about 36 kilograms per hectare. This corresponds to about a 1.2 % decrease in actual

yields relative to the mean of 3000 kg/ha, which is a fifth of the magnitude of the yield reduction caused

by an additional dust storm in Iran (Birjandi-Feriz and Yousefi, 2017) or by the Acid Rain Program in the

USA (Sanders and Barreca, 2022). Importantly, these other estimates were generated using administrative

data on yields, so may not not suffer from attenuation bias due to measurement error common to remotely

sensed variables (Proctor et al., 2023). Furthermore, this 1.2% decrease represents an average effect: yield

reductions in areas with poor governance and regulatory quality are over 3 times larger, which would be on

par with the magnitudes estimated in other contexts.

Table 4 also shows that the NDVI model at the cell-level explains over 50% of the variation in plot-level

yields, which is similar to the R2 found in other work linking the One Acre Fund data to remotely sensed

yields (Burke and Lobell, 2017; Jin et al., 2017). Conditional on observing a sufficiently high R2, in Appendix

11.12 I discuss whether the estimated relationship between NDVI and local yields from Equation 11 may be

biased in my setting, even after controlling for fixed effects and weather. Furthermore, Appendix Tables 31 -

33 demonstrate robustness to varying the size of the grid cell used in the quantification exercise, consistently

showing that NDVI during the growing season is most strongly correlated with observed plot-level yields.

34



Table 4: Relationship between Cell-level NDVI and Cell-level Yields, cell-size = 1000m

(1) (2) (3) (4) (5)
Planting Early Growing Late Growing Harvest Nonfarm

Mean NDVI 11.83 52.10∗∗ 20.25 24.43 9.937
(16.42) (22.04) (21.11) (17.69) (14.62)

Year FE Yes Yes Yes Yes Yes
Grid cell FE Yes Yes Yes Yes Yes
Include weather controls Yes Yes Yes Yes Yes
Mean Yields 3005.643 3005.643 3005.643 3005.643 3005.643
Obs. 1127 1153 1153 1141 1153
R-sq 0.631 0.638 0.632 0.634 0.632

Each column reports the results of an OLS regression. The unit of observation is a cell-year. The dependent variable is mean
plot-level yields in kg/ha across all plots falling within a cell, in a given year. Mean NDVI is the average NDVI in the cell of
size 1000m containing the plot, across days in a particular season during the year that maize on the plot was harvested. The
columns indicate the season for which NDVI is calculated during the year the plot was harvested. Mean NDVI is scaled so that
one unit represents a 0.01 increase in NDVI. Each regression includes linear controls for cell-level averages of growing degree
days, temperature and precipitation during the maize season across plots falling within the cell, as well as cell-level controls for
mean temperature, precipitation, vapor pressure, cloud cover, evapotranspiration and wet days. Year and cell-level fixed effects
are included in the regressions.

8 Sensitivity Analysis

In this subsection, I show that the main findings from Tables 1, 2 and 3 are robust to a variety of sensitivity

checks.

8.1 Mining Activity I start by examining the robustness of my results to alternative definitions of

mining activity that rely of global mineral price shocks, using the World Bank Commodities Price Data.

Given that mineral price shocks are plausibly exogenous to local economic and environmental conditions, this

alternative definition alleviates concerns about endogeneity in the timing of a mine opening. Furthermore,

while the dummy for a mine opening captures the extensive margin effect of mining on agriculture, mineral

price shocks can capture an intensive margin effect by proxying for intensity of mining activity. Appendix

Table 19 reveals that spikes in mineral prices increase downstream water turbidity and lead to statistically

significant declines in yields for downstream cropland. Like the main findings for mining-induced air pollu-

tion, Appendix Table 20 shows that mineral price shocks have no effect on yields in downwind areas. Finally,

Appendix Table 21 is similarly consistent with the main findings for the overall effect of mining through

both pollution and input demand shocks: higher mineral prices are associated with statistically significant

declines in yields for areas within 20-km of a mine.

8.2 Removing Overlapping Buffers To address concerns about pollution spillovers across

neighboring mining areas, I estimate versions of Tables 1, 2 and 3 using only the subset of mines whose

buffers do not overlap with any other mine in the sample. Appendix Tables 25-27 report estimates that are
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similar to my main results.

8.3 Mine Closings I test for symmetry in the effects of mine closings on local yields, though my

analysis is underpowered due to the small number of mines that closed between 2000 and 2022. Appendix

Tables 22 and 23 show that while downstream water turbidity and downwind air pollution levels decline

after a mine closes, yields in exposed areas continue to fall. Furthermore, Appendix Table 24 documents a

negative overall effect of mine closures on yields in areas near mines.

Taken together, these findings provide suggestive evidence that the negative effects of mining pollution

on local agriculture may persist even after a mine closes. This aligns with existing research showing that

soil metal concentrations remain elevated above safe levels for nearly 15 years post-closure (Demková et al.,

2017).

9 Heterogeneous Treatment Effects

An advantage of my empirical design is that I observe a treatment and control area for every mine in my

analysis, before and after the mine opening date, allowing me to estimate mine-specific DIDs. Each mine-

specific DID is estimated by running a separate regression for each mine, where the outcome is NDVI on a

side of the mine in a given month, with controls for weather and robust standard errors.6

Figure 7 plots the distribution of mine-specific overall, water and air pollution effects on yields, revealing

substantial heterogeneity across mines for all three types of analysis. Importantly, the variation in treatment

effects observed in Figure 7 is much larger than what would be observed due to sampling variation alone, as

shown in Appendix Figure 15. This illustrates the value of further investigation into what might be driving

heterogeneity in treatment effects.

The top panel, which shows the distribution of overall effects of mining on local yields, highlights that

the majority of treatment effects are negative and concentrated between 0 to -5%. Notably, there are several

mines with positive treatment effects, which may be explained by some of the higher income from local

demand booms being reinvested in improved inputs or technologies used in agriculture. By focusing on the

set of mines closer to the sample used by Aragón and Rud (2016), I am able to recover treatment effects

that are much closer in magnitude to the 15% decline in agricultural output that they find. Mine-specific

6When estimating the overall specification separately for each mine, only the main effects and interaction terms of Near
with Post, along with controls for weather, are included as covariates in the regression. I exclude the side and year-month
fixed effects as they are correlated with the Near and Post dummies, respectively. The same holds true for the water pollution
specification: I include only the main effects and interaction terms of Downstream with Post, along with controls for weather.
For the air pollution specification, I include side fixed effects since downwind intensity varies across sides and time, as well as
the main effects and interactions of downwind exposure and the Post dummy. Year-month fixed effects are excluded as they
are collinear with the Post dummy.
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estimates obtained from near versus far DID regressions reveal that treatment effects for all 19 Ghanaian

mines in my sample are negative and can be as large as -11%.
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Figure 7: Distribution of Mine-Specific DIDs

The figure plots three histograms showing the distributions of mine-specific DID estimates. Each DID

is estimated from a separate regression of a version of Equation 5 for each mine. The top panel shows

the distribution of mine-specific near vs. far DID estimates obtained by regressing NDVI for a side

(near or far) on the Near dummy interacted with the Post dummy, along with the main effects and

controls for weather. The bottom left panel shows the distribution of mine-specific downstream vs.

upstream DID estimates obtained by regressing NDVI on a side (downstream or upstream) on the

Downstream dummy interacted with the Post dummy, along with the main effects and controls for

weather. The bottom right panel shows the distribution of mine-specific continuous wind intensity

DID estimates obtained by regressing NDVI on a side (N, S, E, W) on the share of days a side is

downwind from the mine in a given month interacted with the Post dummy, the main effects, side

fixed effects and weather controls. Across all regressions, I estimate robust standard errors. Each

mine-specific DID estimate is normalized by mean NDVI in 2000 for that mine, then multiplied by

100 to represent the magnitude of the effect relative to the mean of the outcome at the start of the

panel in percent terms.
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9.1 Dimensions explored I investigate heterogeneity across four key dimensions: (1) governance/regulatory

environments, (2) local economic factors, (3) mine characteristics and (4) local environmental conditions.

Weak local governance and economic indicators have been linked to environmental degradation (Burgess

et al., 2012; Cust et al., 2023; Grossman and Krueger, 1995), while pre-existing environmental conditions

have been shown to moderate pollution effects (Hutchinson, 1984; Oksanen and Kontunen-Soppela, 2021;

Lobell et al., 2022). Similarly, mine characteristics like extraction or processing methods, as well as the type

of commodity extracted, have been associated with varying degrees of pollution (Dudka and Adriano, 1997;

Sahu et al., 2015; Cox et al., 2022).

First, to explore the influence of governance on the local effects of mines, I use the country-level World

Bank World Governance Indicators from 2000—the start of my NDVI panel. I focus on five main indicators:

control of corruption, government effectiveness, regulatory quality, rule of law, and voice and accountability.7

Each indicator is based on data from multiple sources, such as surveys, commercial business information

providers or non-governmental organizations. The underlying data is aggregated into a score for each of the

five indicators, in units of a standard normal distribution from approximately -2.5 to 2.5. Additionally, I

examine whether the mine country’s membership to the Extractive Industries Transparency Initiative (EITI),

designed to promote transparency and accountability in national resource extraction, can explain variation

in the local effects of mining.

Second, I examine heterogeneity in effects on NDVI according to the following mine-specific character-

istics: extraction method (open pit or non-open pit), commodity type, mine age, distance to the nearest

neighboring mine and distance to the nearest town. Finally, I test for heterogeneity by the following eco-

nomic factors: mineral rents as share of GDP in 2000, GDP in 2000 and population in 2000, as well as the

following local environmental conditions: initial air and water pollution exposure (AOD in 2003 and NDTI

in 2000), initial cropland productivity (NDVI in 2000) and precipitation in 2000.

9.2 Machine-learning heterogeneity analysis I train a machine learning model to predict

mine-specific treatment effects given a large number of mine and country-level characteristics. Though my

approach is similar in spirit to the methods of Wager and Athey (2017), who use causal forests to uncover

meaningful dimensions of heterogeneity by estimating conditional average treatment effects, it differs in a

7Kaufmann et al. (2010) define each of the indicators as follows: “Control of corruption captures perceptions of the extent
to which public power is exercised for private gain, as well as elite or private capture. Government effectiveness captures
perceptions of the quality of public services, the quality of policy formulation/implementation and the credibility of government
commitment to these policies. Regulatory quality captures perceptions of the government’s ability to formulate and implement
sound regulations. Rule of law captures perceptions of the extent to which agents have confidence in and follow the rules of
society, such as the quality of contract enforcement, property rights, the police and the courts. Voice and accountability captures
perceptions of the extent to which a country’s citizens can exercise rights to freedom of expression, freedom of association and
free media, as well as whether they can participate in free and fair elections.”
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key way. While I can estimate unit specific treatment effects, Wager and Athey (2017) do not observe control

units that can be matched to each treated unit, so use random forests to non-parametrically define groups of

treated and control units that are comparable across observables. The exercise I conduct is complementary

to their work, as it can be applied to other settings where unit-specific treatment effects can be estimated

and treatment effect heterogeneity may be explained by a variety of factors, such that the researcher wishes

to demonstrate that statistically significant findings from standard heterogeneity analysis are not spurious.

To find the best performing model, I train a collection of ML models to predict treatment effects based

on 8 algorithms, including linear regression models such as OLS, LASSO, Ridge and elastic net, as well as

non-parametric models such as random forest, a classification and regression tree (CART) and a bagged

CART. The unit of observation is a mine, where the outcome of interest is the mine-specific DID estimate

for the overall effect of mining activity on yields. The main predictors include the World Bank governance

indicators, a dummy variable for whether the mine is located in an EITI-member country, GDP in 2000 for

the mining area, population in 2000 for the mining area, mineral rents as a share of GDP in 2000, dummy

variables for mine type, dummy variables for commodity extracted, dummy variables indicating the country

that the mine is located in, mine age, distance to the nearest mine and distance to the nearest town.8

The ML models are applied to the set of 304 mines for which DID estimates are generated and non-

missing data for all predictors is available, using 75% of observations for training and the remaining 25% for

validation. Model hyperparameters are selected based on a grid search. Out-of-sample accuracy measures

are calculated using 5 fold cross-validation of the training dataset. I therefore obtain 25 hyperparameters

combinations for each model (except for OLS), totaling 176 different ML models. Out of all models trained,

the random forest model is identified as the “best” performing model, defined by lowest out-of-sample root

mean-squared error (RMSE).9 I re-train this random forest model over the entire dataset of DIDs and obtain

a measure of variable importance for each predictor.

To estimate variable importance, I construct a measure of “permutation importance,” which leverages the

out-of-bag samples for each tree. First, the RMSE on the out-of-bag sample is calculated. Then, the values

of the predictor of interest in the out-of-bag-sample are randomly shuffled, keeping the values of all other

predictors the same. Finally, the decrease in RMSE on the shuffled data is measured. Larger reductions in

RMSE after permutation imply that a variable is more “important” in contributing to predictive capacity.

I opt for permutation importance over Gini impurity, a common alternative measure of variable importance

for random forest models, as impurity-based importance is less reliable in settings where many predictors

8For the country, commodity and mine type variables, which are originally categorical, categories accounting for less than
5% of the observations in the sample are binned together into “other.”

9The best random forest model is grown on 1000 trees, with 1 predictor randomly sampled at each split and a minimum of
15 data points in each node required for additional splitting to occur.
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are dummies.

Figure 8 plots the ten most important variables from the best random forest model, based on permutation

importance. One striking result is that all five country-level governance indicators are determined to be

highly important. This aligns with a burgeoning literature documenting the role of public governance on

local environmental footprints. Lipscomb and Mobarak (2017) demonstrate the importance of governance in

explaining the spatial patterns of water pollution in Brazil, Burgess et al. (2012) find that weak governance

worsens deforestation in Indonesia and Cust et al. (2023) show that forest loss near oil wells is lower in

countries with stronger public governance. Additionally, my results fit into a larger economics literature

that highlights the importance of well-functioning political institutions for economic development (Acemoglu

et al., 2005).

9.3 Standard heterogeneity analysis With the ML findings in mind, I then turn to imple-

menting the standard practice for heterogeneity analysis used in the economics literature. To estimate

heterogeneity in the overall effect of mining on yields, as well as the effects of water pollution and contem-

poraneous air pollution, I interact the Post and Exposure variables from Equation 5 with the dimension

of interest. In addition, to test for heterogeneity in the effects of prolonged exposure to air pollution on

yields, I estimate Equation 6 separately over different sub-groups defined by the dimension of heterogeneity

of interest.

Across the overall, water and air pollution analyses, weak governance and regulatory environments are

revealed to be important drivers of the negative effect of mining activity on yields. Table 5 reveals that

reductions in NDVI are 2-3 times larger in areas near mines located in countries with below median perfor-

mance on governance indicators. The triple interactions are negative, sizable in magnitude and statistically

significant across all governance indicators, with the largest negative effect detected for mines located in

countries that are not members of the EITI.

Table 5: Heterogeneous Treatment Effects - Governance and Regulatory Environments

Base Not EITI Member Control of Corruption Govt. Effectiveness Rule of Law Reg. Quality Voice and Accountability
Near × Post -0.00638∗∗∗ -0.00278∗∗∗ -0.00405∗∗∗ -0.00415∗∗∗ -0.00429∗∗∗ -0.00426∗∗∗ -0.00436∗∗∗

(0.000980) (0.000900) (0.00108) (0.00110) (0.00108) (0.00108) (0.00111)

Near × Post × Z -0.00714∗∗∗ -0.00499∗∗ -0.00472∗∗ -0.00453∗∗ -0.00472∗∗ -0.00414∗∗

(0.00191) (0.00198) (0.00197) (0.00200) (0.00202) (0.00196)
Number of mines 307 307 307 307 307 307 307
Mean NDVI (t-1) .476 .476 .476 .476 .476 .476 .476

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Similar patterns in heterogeneous treatment effects are uncovered from the air and water regressions.

Appendix Table 15 shows that the triple interactions with the governance and EITI indicators from the

water pollution regressions are overwhelmingly negative, though not statistically significant, likely due to

40



Distance to Nearest Town

Country − Other

Ever EITI

Country − DRC

Control of Corruption

Govt. Effectiveness

GDP 2000

Voice and Accountability

Rule of Law

Regulatory Quality

0e+00 2e−05 4e−05 6e−05
Variable

Im
po

rt
an

ce

Figure 8: Most Important Variables from Best Random Forest Model

The figure plots the permutation importance measure for each of the top 10 most important variables

selected by the best random forest model for predicting mine-specific DID estimates. The unit of

observation in the random forest model is a mine, where the outcome variable is a mine-specific near

vs. far DID estimate for the effect of mining on NDVI. The set of predictors includes mine type

dummies, commodity dummies, the World Bank governance indicators, GDP in 2000, population in

2000, mineral rents as a share of GDP in 2000, precipitation in 2000, distance to the nearest neighboring

mine, distance to the nearest town, country dummies, and membership to the EITI. The best random

forest model is grown on 1000 trees, with 1 predictor randomly sampled at each split and a minimum

of 15 data points in each node required for additional splitting to occur.
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the small sample size. For air pollution, Appendix Figures 21 - 23, which show the heterogeneous treatment

effects from the air pollution distributed lag model, reveal a consistent pattern of reductions in NDVI

occurring only for mines in countries with below median government effectiveness, regulatory quality and

accountability. Most strikingly, Figure 9, shown below, highlights how statistically significant reductions

in NDVI occur for mines located in countries that are not members of the EITI, after about 8 months of

exposure to air pollution from mines.

However, the standard heterogeneity analysis identifies several other statistically significant dimensions of

heterogeneity that not considered important predictors in the ML model. For instance, I find that exposure to

pollution before a mine opens influences the extent to which mining activity impacts local agriculture. Across

both the air and water pollution analyses, NDVI reductions are higher for cropland in areas initially exposed

to lower pollution levels. Appendix Table 13 Column 2 highlights how NDVI reductions are about twice

as large in cropland near rivers that had below median levels of initial turbidity, with the triple interaction

being statistically significant. Similarly, Appendix Figure 34 illustrates how statistically significant NDVI

reductions occur only for cropland initially exposed to lower levels of AOD. These effects could be explained

by plant adaptation (Hutchinson, 1984; Oksanen and Kontunen-Soppela, 2021) or changing behaviors of

farmers in response to pollution (Magesa et al., 2023; Villamayor-Tomas et al., 2024). Furthermore, while

the estimates on the triple interactions with mineral rents as a share of 2000 GDP and distance to the

nearest neighboring mine are both large and statistically significant in the standard heterogeneity analysis,

both variables are included in the 10 least important variables determined by the ML model (shown in

Appendix Figure 16).

This comparison between the ML and the standard heterogeneity analyses is highlighted in Figure 10,

which plots the ML importance measures for each dimension of heterogeneity used as a predictor in the ML

model on the x-axis and the p-value from the triple interaction with this dimension from the standard het-

erogeneity analysis on the y-axis. We can observe that only the governance indicators are consistently shown

to be statistically significant in conventional heterogeneity analysis, as well as considered highly important

by the ML model for explaining variation in the mine-specific treatment effects (bottom-right quadrant).

In contrast, several commodity and country dummies have statistically significant triple interactions for the

standard analysis, but are deemed less important by the ML model (bottom-left). This exercise highlights

the value of ML for disciplining standard heterogeneity analysis in settings where unit-specific treatment

effects can be estimated. In Appendix Figure 17, I also show that the main conclusions drawn from the

ML analysis discussed above are robust to estimating a classification model, where the outcome is a dummy

variable equal to one if the mine-specific DID estimate is negative. While the ranking of the most important

variables slightly changes, four of the five country-level governance indicators still rank within the top five
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Figure 9: Cumulative effect of mining air pollution on NDVI - heterogeneity by EITI membership

Each panel in the figure plots the cumulative impact on mean NDVI of +30 days of downwind exposure
to air pollution from a mine in each of the concurrent and previous P months. The left panel plots the
cumulative impact for mines located in countries that are EITI members, while the right panel plots
it for mines in non-member countries. Each value reports the point estimate and 95 percent CI on∑P

p=0 δp from a different distributed lag model, as I increase P along the horizontal axis.
∑P

p=0 δp can
be interpreted as the average difference in cumulative effects of mining air pollution on NDVI between
the pre and post period, where the post period is defined as the time period after a mine opens. The
sample includes only the set of mines with non-missing NDVI data observed on all 4 sides, for all 12
months in each year, for at least 5 years pre- and 5 years post-mine opening. Each distributed lag
model is estimated using mine-side-months observed after the time period 3 years before a mine first
opens, to ensure that lagged wind exposure and NDVI are observed for at least 2 years before the
current month.
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most important predictors.
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Figure 10: ML versus Standard Heterogeneity Analysis

On the x-axis, the figure plots the measure of ML permutation importance for each predictor used
in the best random forest model predicting mine-specific near vs. far DID estimates. The y-axis
shows the p-value for the triple interaction of the binarized version of each predictor with the Near
and Post dummies in the standard heterogeneity analysis. Each point is color-coded according to the
category of predictor it belongs to. The governance category includes the five World Bank Governance
Indicators and a dummy variable for membership to the Extractive Industries Transparency Initiative
(EITI). The economic category includes GDP in 2000, population in 2000 and mineral rents as a share
of GDP in 2000. Mine characteristics include mine type, mineral processing method, distance to the
nearest neighboring mine, distance to the nearest town and mine age. The commodity and country
categories include dummies for the main commodity extracted at the mine (gold , copper, platinum,
diamonds, other) and the country that the mine is located in (Ghana, South Africa, Zambia, DRC,
other), respectively.

10 Discussion

This paper quantifies the extent to which industrial mining affects local agricultural output through pollution

externalities versus local demand shocks that raise the returns to inputs outside of agriculture. To isolate

the effects of pollution, I link mine geolocations to remotely sensed measures of pollution and crop yields,

employing spatial difference-in-difference designs that leverage variation in pollution exposure around mines

driven by topography or weather—factors that are plausibly exogenous to local market conditions.

A key contribution of this paper is documenting increases in mining-induced air and water pollution, then
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estimating the subsequent externalities on local yields. Although mining activities meaningfully increase

water and air pollution in downstream and downwind areas respectively, the corresponding declines in yields

are modest. Specifically, mining leads to statistically significant reductions in yields of approximately 3-4%

through the water pollution channel, with no observable impact on yields from air pollution.

Measurement error in remotely sensed yield data may explain why my estimated treatment effects are

smaller than those obtained using self-reported yields from survey data (Aragón and Rud, 2016). Mean-

reverting measurement error in remotely sensed dependent variables can attenuate treatment effects (Proctor

et al., 2023), suggesting that my estimates of mining pollution externalities may represent a conservative

lower bound of the true effects. Unfortunately, the lack of ground-truth data on plot-level yields near mining

areas limits my ability to correct for this type of measurement error.

I benchmark my estimates of the effects of mining-induced air and water pollution on yields against

an estimate of the overall impact of mining, which includes both pollution externalities and the increased

returns to inputs outside of agriculture. I find that pollution externalities account for nearly half of the

overall effect on yields, indicating that declines in local agricultural output are not solely driven by positive

structural transformation. Furthermore, average effects mask significant heterogeneity across mines, with

both machine learning and standard heterogeneity analyses revealing that poor governance and regulatory

environments are associated with larger reductions in yields.

My findings raise important distributive concerns regarding the clean energy transition. As more devel-

oped countries promote widespread clean energy use to internalize negative pollution externalities within

their own borders, they may inadvertently shift the burden of these externalities to less developed countries,

where the necessary inputs for these green technologies are sourced. This concern is borne out in my data:

the extraction of critical inputs for clean energy negatively impacts agricultural output in African countries,

particularly those with weak governance. The persistence of mining pollution externalities, in the absence of

sufficiently large agglomeration effects, may lead to a situation where local economic booms from natural re-

source extraction fade once a mine closes (Black et al., 2005; Kotsadam and Tolonen, 2016), while the effects

of mining pollution on local agriculture may linger for decades (Akcil and Koldas, 2006). If pollution has

driven the agricultural sector to a lower, less productive equilibrium, a shift back into agriculture following

a mine’s closure could result in lower living standards for mining communities compared to those existing

before the mine opened. Given that many of the poorest households rely on agriculture, policymakers must

consider the justice and equity implications of the clean energy transition going forward.
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11 Appendix

11.1 Mine Locations Figure 11 plots the set of 307 mines from the S&P dataset used to estimate

the overall effect of mining on local yields. Each yellow point indicates the centroid of a mining operation,

while the countries shaded in blue are those that contain at least one mine used in the analysis.

Figure 11: Map of mines used in analysis
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11.2 Data Construction

11.2.1 Water Pollution I select only mines that are within 1 kilometer of a river. I use the HydroR-

IVERS data to identify rivers located in Africa. This dataset is a vectorized line network of rivers that have a

catchment area of at least 10 km2, an average river flow of at least 0.1 m3/sec, or both. Each observation in

this dataset is a river segment, where segment end points are defined by splitting rivers or streams at nodes

where they fork. Each mine within 1 km of a river in this network is “snapped” to the closest river segment,

then the upstream and downstream river segments from the mine river segment are identified. Mines that are

snapped to river segment end points, for which an upstream or downstream segment is missing, are excluded

from the analysis. Parts of the upstream or downstream river segments that extend beyond a buffer of radius

10-km from the snapped mine point are removed. The upstream and downstream segments are buffered by

1-kilometer on either side of the line to identify land area around the rivers that would likely be affected by

acid mine drainage either through seepage or irrigation. The “side” of a mine in the water pollution analysis

refers to the upstream or downstream buffer.

Next, I calculate the satellite-based measure of water pollution, NDTI, over river water pixels. I first

identify the precise shape of the upstream and downstream river segments near mines using a water mask

based on the normalized difference water index (NDWI). This index is commonly used to detect water bodies

in satellite images and is calculated from the green and near-infrared (NIR) bands.10 I generate the NDWI

water mask from a mosaic of cloud-free Sentinel-2 pixels from 2020-2023 at a 15-m resolution for the entire

area within the 10-km buffer around the snapped mine point. Pixels identified as water based on a positive

NDWI value are marked as river pixels.

Then, I calculate monthly mean NDTI for each river pixel according to the following formula: NDTI =

Red−Green
Red+Green . I use Landsat 7 data at a 30-m resolution, as it is the highest resolution data available that covers

the time period of 2000-2024.11 I mask out pixels marked as “low quality” due to cloud cover, shadow or

other atmospheric interference. Finally, I average monthly NDTI across water pixels within the upstream or

downstream river segments, for each mine, to create mine-month-side level measures of river NDTI.

To estimate the relationship between NDTI and ground-based turbidity, I use geo-located data on ground-

based measures of total suspended solids from the Global River Water Quality (GRWQ) data. I calculate

NDTI over water pixels located within a 500-m radius of the GRWQ sampling point, during the month that

the sample was collected, again using Landsat 7 data. Results are shown in Table 6.

10

NDWI =
Green−NIR

Green + NIR

11The Sentinel-2 satellite only launched in 2015
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Table 6: Relationship between Total Suspended Solids from Ground-based Sampling and Remotely-Sensed
Turbidity

(1) (2)
Normalized Difference Turbidity Index 940.9∗∗∗ 887.1∗∗

(341.4) (364.7)
Number of sampling sites 178 178
Include weather controls No Yes
TSS mean 147.012 147.012
NDTI mean .007 .007

Each column reports the results of a linear regression. The unit of analysis is a sampling site on the date that the water sampling
occurred. The dependent variable is the level of total suspended solids identified from ground-based water sampling and testing
at the sampling site, on a specific date. The independent variable is the mean normalized difference turbidity index for the
river segment falling within a 500 meter buffer around the sampling site, in the month corresponding to the sampling date. All
models include linear and quadratic controls for mean temperature, precipitation, vapor pressure, wet days, evapotranspiration
and cloud cover. Robust standard errors are reported in parentheses

11.2.2 Air Pollution I rely on global daily rasters of MODIS AOD generated by Gendron-Carrier et al.

(2022). The authors provide daily tifs from July 4, 2002 until August 31, 2018, for the Aqua satellite and

February 24, 2000 until July 31, 2020 for the Terra satellite. Given MODIS data availability, the panel used

in the air pollution analysis covers 2003 - 2017. From the daily AOD rasters, I construct mean AOD for each

mine-side-month by averaging all pixel-days with non-missing AOD readings that fall within each side of a

mine in a given month. I calculate this average monthly AOD only using data from the Aqua satellite, as

the Terra satellite suffers from more missing values due to satellite detection errors during my time period

of interest.

The algorithm detecting AOD can perform poorly in certain cases, which generates missing values. Levy

et al. (2013) find that the algorithm performs poorly over light surfaces, such as desert or snowy regions. To

address this limitation, I exclude mining areas that are adjacent to the desert, such as parts of Burkina Faso

and Mali that neighbor the Sahel. In addition, the MODIS instruments can only detect AOD on cloud-free

days, so missing data in certain regions or on certain days tend to reflect high levels of cloud cover. This

results in seasonality of missingness in the MODIS data; I manage this issue by using mine-year-month fixed

effects in my model, which account for mine-specific monthly variations in weather patterns correlated with

satellite errors. Furthermore, in regressions with AOD as the outcome variable, I control for the number

of non-missing pixels used to construct mean monthly AOD. I opt for a linear control of non-missing pixel

count over interpolating missing AOD as interpolation algorithms may introduce measurement error that is

difficult to interpret.

To calculate my measure of downwind exposure for each mine-month-side, I use the MERRA-2 daily

aggregates of hourly time-averaged U and V wind vector components for heights of 2 meters and 50 meters,

at a 0.5 degree × 0.625 degree resolution. I first determine the direction (in degrees from due North) that
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the wind is blowing from the mine centroid, on each day from 2000-2022.12 I then classify this direction into

one of the four 90-degree sides defined by the cardinal directions (North, East, South, West). Finally, for

each mine-month, I count the number of days that the wind blows from the mine into each of the four sides,

as well as determine the average monthly wind speed experienced by each side. Downwind exposure of a

given side is defined as the share of days in a month that the side is downwind from the mine and ranges

from 0 to 1.

11.2.3 NDVI I proxy for crop yields using the normalized difference vegetation index (NDVI). NDVI is

strongly correlated with crop productivity and final yields, especially during the growing season (Panek and

Gozdowski, 2021). I construct a measure of pixel-level daily mean NDVI from 2000 - 2022 using the MODIS

MCD43A4 Version 6.1, combined Terra and Aqua product at a 500-m resolution. NDVI is calculated from

the MODIS data using readings of light reflected in the near-infrared and red spectrum.13

When aggregating NDVI from the pixel-day to the mine-side-month level, I first mask out pixels that are

not classified as cropland according to the Global Food Security Support Analysis Data (GFSAD) cropland

extent map, available at a 1-km resolution. This helps ensure that changes in NDVI reflect changes in

crop yields rather than changes in forest cover, for instance due to deforestation that might occur during

construction of the mine site.

My measure of cropland NDVI may be affected by different sources of measurement error. To begin, the

coarse 1-km resolution of the cropland extent data may constrain the ability to detect cropland of very small

farms. Additionally, NDVI may also suffer from errors due to factors like cloud cover, surface reflectance,

canopy thickness, the level of atmospheric aerosols and satellite sensor errors. I discuss how measurement

error in NDVI might affect estimates from causal inference in Appendix 11.12. Despite these potential

sources of measurement error, Table 4 shows that NDVI is still highly predictive of plot-level yields in Sub-

Saharan Africa, though the magnitude of the correlation may be attenuated. I construct my final measures

of cropland NDVI for the treatment and control areas by averaging NDVI across all cropland pixel-days

within each mine-side-month, within the relevant buffers.

An emerging literature uses machine learning algorithms to predict crop yields based on vegetation

indices, like NDVI, and other covariates (Burke and Lobell (2017), Jin et al. (2017)). Unfortunately, most

of the mining areas in my analysis are not located near sites where ground truth measures of yields, like

cropcuts, are available. Furthermore, high quality ground truth data are not available prior to 2015. Given

that machine learning models predict more poorly on observations that are spatially distant from training

12Direction = 90− atan2(v, u)× 180/π
13NDVI = NIR−RED

NIR+RED
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data samples Proctor et al. (2023) or outside of the time period covered by the training data (Barriga-

Cabanillas et al., 2024), I am concerned that using predicted yields as my main outcome of interest would

introduce additional measurement error into the estimation of the effect of mining on yields. As a result, I

opt to use NDVI as my main measure of agricultural output rather than predicted yields. This allows me

to remove prediction error as a source of measurement error, and instead focus solely on understanding how

measurement error in the NDVI data itself could be affecting estimated coefficients.

11.2.4 Agricultural Seasons For each mining area, I observe 4-5 agricultural seasons. Like Sacks et al.

(2010), I define the seasons for planting and harvest using start and end dates, and define the growing

season as the days in between the planting end date and the harvest start date. As the biological sciences

literature suggests that pollution can affect crops more strongly during the reproductive phase of the plant,

which occurs early in the growing season, I divide this growing season in half to make early and late growing

seasons (Liu and Desai, 2021). Finally, I define the non-farming season as the time between the harvest end

date of one year and the planting start date of the next year. In mining areas where the harvesting period

of one year overlaps with the planting period of the subsequent year, I define the harvest season as ending

at the start of next year’s planting season. For each year, I assign each mining area the modal season dates

across all cells falling within the buffers linked to that mine, where the season dates are consistent across

the treatment and control buffers of the same mine.

11.3 AOD Spatial Lag Model To estimate the spatial lag model for AOD, I define concentric

rings around a mine point with the following distances: 0-10km, 10-20km, 20-40km, 40-60km, 60-100km,

100-150km, 150-200km. Each of these rings is divided into four 90-degree slices indicating the cardinal

directions. For each mine-month, I calculate the number of days the wind is blowing from the mine into

a given side, as well as the average wind speed experienced by that side. I estimate a version of Equation

5, with an additional interaction between the post dummy, wind intensity and a dummy for each distance

ring, with the 150-200km ring being the ommitted category. Figure 12 plots the coefficients of these triple

interactions, which show the DID estimates for the effect of mining on AOD at increasing distances from the

mine centroid.
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Figure 12: Mean AOD Spatial Decay Model

11.4 NDVI Spatial Lag Model To estimate the spatial lag model for AOD, I define concentric

rings around a mine point with the following distances: 0-20km, 20-40km, 40-60km, 60-100km, 100-150km.

I estimate a version of Equation 5 that replaces the Near dummy with a series of dummies for each of the

distance rings, with the 100-150km ring being the omitted category. Figure 13 plots the coefficients on the

interactions between the post dummy and each of the distance ring dummies, showing the DID effect of

mining on NDVI at increasing distances from the mine centroid.
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Figure 13: Mean NDVI Spatial Decay Model

11.5 Distributed Lag Results

11.5.1 Average effects: distributed lag as table

Effect of Cumulative Air Pollution Exposure on NDVI

Number of Months Prior
∑P

p δp

∑P
p δp

Mean NDVI Standard error p

1 0.0003 0.0656 0.0011 0.7956

2 0.0006 0.1307 0.0012 0.6483

3 0.0005 0.1263 0.0014 0.6890

4 0.0007 0.1501 0.0015 0.6616

5 0.0007 0.1581 0.0016 0.6672

6 0.0005 0.1240 0.0017 0.7488

7 0.0004 0.0869 0.0018 0.8297

8 0.0002 0.0405 0.0018 0.9220

9 0.0001 0.0222 0.0018 0.9579

10 0.0001 0.0260 0.0018 0.9509

11 0.0001 0.0302 0.0018 0.9432
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12 0.0001 0.0285 0.0018 0.9464

13 0.0001 0.0293 0.0018 0.9451

14 0.0001 0.0285 0.0019 0.9468

15 0.0001 0.0291 0.0019 0.9460

16 0.0001 0.0231 0.0019 0.9574

17 0.0001 0.0268 0.0019 0.9506

18 0.0002 0.0348 0.0019 0.9363

19 0.0002 0.0345 0.0019 0.9371

20 0.0001 0.0330 0.0019 0.9401

21 0.0002 0.0374 0.0019 0.9326

22 0.0001 0.0290 0.0019 0.9478

23 0.0001 0.0214 0.0019 0.9614

24 0.0001 0.0148 0.0019 0.9734

11.5.2 Distributed lag: growing versus non-growing seasons The figure below plots the distributed

lag model estimated separately over months in the growing and non-growing seasons.
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Figure 14: Average effect of cumulative mining-induced air pollution exposure on NDVI - growing vs. non-
growing seasons
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11.6 Heterogeneity - Near vs. Far

11.6.1 Mine-specific treatment effects The figure below plots a histogram of the mine-specific DID

estimates of the overall effect of mining on local yields against a histogram of simulated DID estimates. To

generate the observed mine-specific DID estimates, I regress NDVI on the side of a mine (near/far) on a

dummy variable for Near interacted with the dummy variable for Post, the main effects and controls for

weather. To generate the simulated DID estimates, I make random draws from a normal distribution with

a mean equal to the average overall treatment effect, -0.00638, shown in Table 3 Column 1, and standard

deviation equal to the standard error of the average overall treatment effect, 0.000980.
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Figure 15: Variation in observed mine-specific DIDs is greater than what we would expect due to sampling
variation
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11.6.2 Standard heterogeneity analysis The section below reports the results for the standard het-

erogeneity analysis for the overall effect of mining on yields.

Table 8: Heterogeneous Treatment Effects - Economic Factors

Base Above Med. Mineral Rents Above Med. GDP - 2000 Above Med. Pop - 2000
Near × Post -0.00638∗∗∗ -0.00534∗∗∗ -0.00692∗∗∗ -0.00709∗∗∗

(0.000980) (0.00108) (0.00157) (0.00160)

Near × Post × Z -0.00568∗∗ 0.00107 0.00142
(0.00242) (0.00195) (0.00195)

Number of mines 307 307 307 307
Mean NDVI (t-1) .476 .476 .476 .476

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 9: Heterogeneous Treatment Effects - Mine Characteristics

Base Open Pit Gold Coal Near Other Mine Near Town Old Mine
Near × Post -0.00638∗∗∗ -0.00615∗∗∗ -0.00639∗∗∗ -0.00675∗∗∗ -0.00416∗∗∗ -0.00611∗∗∗ -0.00615∗∗∗

(0.000980) (0.00174) (0.00133) (0.00113) (0.00123) (0.00150) (0.00159)

Near × Post × Z -0.000376 0.00000921 0.00247 -0.00449∗∗ -0.000573 -0.000362
(0.00210) (0.00178) (0.00151) (0.00194) (0.00193) (0.00201)

Number of mines 307 307 307 307 307 307 307
Mean NDVI (t-1) .476 .476 .476 .476 .476 .476 .476

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 10: Heterogeneous Treatment Effects - Environmental Conditions

Base Above Med. NDVI - 2000 Above Med. Precipitation - 2001 Growing Season
Near × Post -0.00638∗∗∗ -0.00526∗∗∗ -0.00762∗∗∗ -0.00560∗∗∗

(0.000980) (0.00152) (0.00163) (0.00113)

Near × Post × Z -0.00226 0.00247 -0.00162
(0.00195) (0.00194) (0.00114)

Number of mines 307 307 307 307
Mean NDVI (t-1) .476 .476 .476 .476

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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11.6.3 ML heterogeneity analysis Figure 16 plots the set of the 10 least important variables used in

the best performing random forest model, while Figure 17 plots the 10 most important variables from an

alternative classification random forest model, trained to predict an indicator for whether the treatment

effect is less than zero using the same set of predictors as in the main ML exercise.
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Figure 16: 10 Least Important Variables from ML Model

Figure 18 plots mine-specific DID estimates from estimating the effect of mine openings on remotely

sensed air pollution using Equation 5 with AOD as the outcome of interest against mine-specific DID esti-

mates obtained by estimating the same specification using NDVI as the outcome of interest.
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Figure 17: Most Important Variables from Best Random Forest Model: Classification
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Figure 18: Mine-specific AOD DID estimates vs. NDVI DID estimates
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11.7 Heterogeneity - Contemporaneous Air Pollution The tables below report hetero-

geneous treatment effect estimates using the contemporaneous air pollution specification of Equation 5.

Table 11

Base EITI Control of Corruption Govt. Effectiveness Rule of Law Reg. Quality Voice and Accountability
Wind -0.00123 -0.00261 -0.00190 -0.000730 -0.00280 -0.000526 -0.000656

(0.00224) (0.00412) (0.00333) (0.00382) (0.00337) (0.00375) (0.00328)

Wind × (Post - 3) 0.000277 0.000621 -0.00240 -0.00122 -0.000435 -0.00169 -0.00100
(0.00146) (0.00202) (0.00189) (0.00166) (0.00188) (0.00172) (0.00152)

Wind × (Post - 3) × Z -0.000554 0.00402 0.00246 0.00106 0.00321 0.00221
(0.00284) (0.00267) (0.00271) (0.00271) (0.00268) (0.00271)

Number of mines 102 102 102 102 102 102 102
Mean NDVI (t-1) .492 .492 .492 .492 .492 .492 .492

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 12

Base Above Med. Mineral Rents Above Med. GDP - 2000 Above Med. Pop - 2000
Wind -0.00123 -0.00283 -0.00102 -0.000486

(0.00224) (0.00265) (0.00282) (0.00341)

Wind × (Post - 3) 0.000277 0.0000825 0.000147 0.00193
(0.00146) (0.00175) (0.00193) (0.00209)

Wind × (Post - 3) × Z 0.000671 0.000372 -0.00370
(0.00274) (0.00285) (0.00274)

Number of mines 102 102 102 102
Mean NDVI (t-1) .492 .492 .492 .492

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 13

Base Open Pit Gold Coal Copper Near Other Mine Near Town Old Mine
Wind -0.00123 -0.00688 0.00243 -0.00407∗ -0.00174 -0.00227 -0.00156 -0.00123

(0.00224) (0.00555) (0.00333) (0.00235) (0.00256) (0.00328) (0.00329) (0.00224)

Wind × (Post - 3) 0.000277 0.00779∗∗ 0.00125 0.000267 0.00104 0.00229 -0.0000280 0.000277
(0.00146) (0.00300) (0.00204) (0.00164) (0.00143) (0.00186) (0.00217) (0.00146)

Wind × (Post - 3) × Z -0.0104∗∗∗ -0.00252 -0.000114 -0.00381 -0.00412 0.000698 0
(0.00338) (0.00253) (0.00369) (0.00439) (0.00281) (0.00278) (.)

Number of mines 102 102 102 102 102 102 102 102
Mean NDVI (t-1) .492 .492 .492 .492 .492 .492 .492 .492

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 14

Base Above Med. AOD - 2003 Above Med. NDVI - 2003 Above Med. Precipitation - 2003 Growing Season
Wind -0.00123 0.000823 -0.00151 -0.00132 -0.00223

(0.00224) (0.00463) (0.00338) (0.00461) (0.00283)

Wind × (Post - 3) 0.000277 -0.000160 -0.00162 0.000426 -0.000810
(0.00146) (0.00151) (0.00160) (0.00216) (0.00159)

Wind × (Post - 3) × Z 0.000682 0.00298 -0.000231 0.00260
(0.00265) (0.00258) (0.00292) (0.00218)

Number of mines 102 102 102 102 102
Mean NDVI (t-1) .492 .492 .492 .492 .492

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

11.8 Heterogeneity - Distributed Lag The figures below plot the distributed lag model from

Equation 6 estimated separately over different subsets of the data split along various dimensions of hetero-

geneity.
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Figure 19: Heterogeneity by control of corruption
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Figure 20: Heterogeneity by rule of law
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Figure 21: Heterogeneity by government effectiveness
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Figure 22: Heterogeneity by regulatory quality
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Figure 23: Heterogeneity by voice and accountability
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Figure 24: Heterogeneity by mine type
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Figure 25: Heterogeneity by mine age

76



Above Median Distance Below Median Distance

0 4 8 12 16 20 24 0 4 8 12 16 20 24

−2

−1

0

1

Number of lags (months) in the model (P)

N
D

V
I e

ffe
ct

 (
as

 %
 o

f m
ea

n 
N

D
V

I)

Figure 26: Heterogeneity by distance to nearest mine
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Figure 27: Heterogeneity by distance to nearest town
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Figure 28: Heterogeneity by commodity: gold
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Figure 29: Heterogeneity by commodity: coal
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Figure 30: Heterogeneity by commodity: copper
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Figure 31: Heterogeneity by mineral rents as share of GDP - 2000
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Figure 32: Heterogeneity by GDP - 2000
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Figure 33: Heterogeneity by population - 2000
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Figure 34: Heterogeneity by initial pollution levels (AOD 2003)
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Figure 35: Heterogeneity by initial yields (NDVI 2001)
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11.9 Heterogeneity - Water The tables below report the results from estimating Equation 5 for

water pollution, with an additional triple interaction for the dimension of heterogeneity of interest.

Table 15

Base EITI Control of Corruption Govt. Effectiveness Rule of Law Reg. Quality Voice and Accountability
Downstream × Post -0.0140∗∗ -0.0129 -0.0131∗∗ -0.0164∗ -0.0126∗∗ -0.0117∗ -0.0149∗∗

(0.00587) (0.00911) (0.00600) (0.00840) (0.00487) (0.00657) (0.00660)

Downstream × Post × Z -0.00203 -0.00185 0.00527 -0.00330 -0.00514 0.00170
(0.0119) (0.0119) (0.0115) (0.0126) (0.0121) (0.0119)

Number of mines 38 38 38 38 38 38 38
Mean NDVI (t-1) .467 .467 .467 .467 .467 .467 .467

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 16

Base Open Pit Gold Coal Near Other Mine Near Town Old Mine
Downstream × Post -0.0140∗∗ -0.0162 -0.00849 -0.0132∗ -0.000109 -0.0189∗∗∗ -0.0234∗∗

(0.00587) (0.0109) (0.00511) (0.00706) (0.00625) (0.00687) (0.0100)

Downstream × Post × Z 0.00333 -0.0166 -0.00432 -0.0285∗∗ 0.00937 0.0151
(0.0129) (0.0147) (0.00961) (0.0108) (0.0115) (0.0122)

Number of mines 38 38 38 38 38 38 38
Mean NDVI (t-1) .467 .467 .467 .467 .467 .467 .467

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 17

Base Above Med. Mineral Rents Above Med. GDP - 2000 Above Med. Pop - 2000
Downstream × Post -0.0140∗∗ -0.0180∗∗∗ -0.0121 -0.0193∗∗

(0.00587) (0.00553) (0.00948) (0.00878)

Downstream × Post × Z 0.0129 -0.00406 0.0108
(0.0151) (0.0115) (0.0115)

Number of mines 38 38 38 38
Mean NDVI (t-1) .467 .467 .467 .467

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 18

Base Above Median Turbidity - 2000 Above Med. NDVI - 2000 Above Med. Precipitation - 2001 Growing Season
Downstream × Post -0.0140∗∗ -0.0252∗∗∗ -0.0107∗∗ -0.0214∗∗ -0.0132∗∗

(0.00587) (0.00856) (0.00450) (0.00975) (0.00556)

Downstream × Post × Z 0.0199∗ -0.00633 0.0146 -0.00185
(0.0113) (0.0112) (0.0116) (0.00467)

Number of mines 38 38 38 38 38
Mean NDVI (t-1) .467 .467 .467 .467 .467

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

11.10 Structural Breaks Model For each mine, I construct total luminosity for each year from

1992-2012 as the sum of nighttime light intensity across all pixels that fall within the 20-km disk around

the mine centroid, in a given year. The nightlight data is provided by the DMSP OLS at a 1-km resolution.

However, the DMSP-OLS data is not available to the public after 2013. From 2013 onwards, there was a

switch to the Visible Infrared Imaging Radiometer Suite (VIIRS) instrument as the source of nightlights.

Given that the spatial and radiometric resolution from VIIRS is higher than DMSP-OLS, Li et al. (2020)

created a temporally harmonized global nighttime lights dataset from 1992-2019. Unfortunately, the temporal

consistency of their harmonized data does not perform well in areas with low levels of luminosity (pixels

with DN values greater than 7). Time series of nighttime light intensity for mining areas reveal a sharp

jump in luminosity in 2013, when there was a switch to VIIRS. Given that the average pixel in a mining

area has a DN value of 6.5, this suggests that the harmonized data is not temporally consistent for mining

areas. As a result, I only estimate a structural break in nightlights for mines that opened before 2013, to

avoid confounding due to the switch from DMSP to VIIRS.

I use the methods of Andrews (1993) and Andrews and Ploberger (1994) to detect a structural break in

the mean of nightlights for each mine. Given a single proposed break point, the nightlights time series is

split into two bins. The estimation method fits a regression of nightlights on an intercept for the data in

each bin and calculates an F statistic based on the null hypothesis that the mean in nightlights is the same

between the two bins. This step is repeated for all possible break points in the data to yield a time series

of F-statistics. The structural break is identified as the year which yields the largest F-statistic. To test

whether this structural break is statistically significant, I use the critical values for the F-statistics identified

by Andrews (1993) and Andrews and Ploberger (1994), which are computed under the null hypothesis of no

structural change such that the asymptotic probability that the supremum of the time series of F-statistics

exceeds this critical value is α = 0.05. In other words, if the F-statistic of the structural break is higher than

the critical value, we can reject the null of no structural breaks in nightlights at the 0.05 level.

I am successfully able to estimate a structural break for 100 mines in my sample that opened prior to

2013. For the median mine, a structural break in nightlights occurs 3 years prior to the listed S&P start date,
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with approximately 60% of the mines having the break year between 0 and 3 years prior to the S&P defined

date. This finding aligns with that of Benshaul-Tolonen (2020), who uses a local polynomial regression to

show that there is a break in the trend for nightlights within 10 kilometers of a mine that occurs roughly 2

years prior to the date of a mine opening. She refers to this break as the start of the “investment” phase

in a mine’s life cycle. Figure 36 plots the histogram of the difference between the S&P year and the break

year.
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The median difference between the S&P year and break year is 3 years; the mean difference is 4.38 years.

Figure 36: Difference between S&P Year and Structural Break Year

Furthermore, for most mines the year identified as the structural break visually aligns with the timing of

a sharp increase in nighttime lights. Figure 37 provides an example from Goedgevonden coal mine in South

Africa.

To investigate the robustness of this method for detecting structural breaks, I examine the correlation

between the F-statistic from the break year and the start-date “error”, defined as the difference between the

S&P defined year and the break year. One might be concerned if the method is more likely to reject the null

of no structural break in cases where there is a large difference between the S&P defined year and the break

year, suggesting that it would not perform well in detecting breaks that occur close to the listed date.

These concerns do not seem to be borne out: in Figure 38 we see that across the domain of the “error”,

the sup F statistic ranges between 0-150 in most cases. In fact, the few outliers with very high supF statistics

occur for cases where the S&P year and the break year are very close.
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Figure 37: Time series of nightlights for Goedgevonden coal mine, South Africa
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Figure 38: Magnitude of supF statistic vs. the difference between S&P defined start year and break year
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11.11 Sensitivity Analysis

11.11.1 Mineral Price Shocks I report analogous versions of Tables 1, 2 and 3, replacing the Post

dummy with the log of international mineral price for the main commodity extracted at the time.

Table 19: Relationship Between Mineral Price Shocks, Remotely-Sensed Water Turbidity and Crop Yields

(1) (2) (3)

All seasons Growing Non-growing

Panel A: First Stage for Turbidity
Downstream × Log(Price) 0.00392 0.00352 0.00442

(0.00316) (0.00399) (0.00325)
Mines 39 39 39
Observations 15,146 7,480 7,666
Mean NDTI (t-1) .02 -.01 .04

Panel B: Reduced Form for Yields
Downstream × Log(Price) –0.01290*** –0.01568*** –0.01016**

(0.00437) (0.00489) (0.00411)
Mines 46 46 46
Observations 25,032 12,640 12,392
Mean NDVI (t-1) .45 .54 .36

Mine-side FE Yes Yes Yes
Mine-year-month FE Yes Yes Yes
Weather Yes Yes Yes

Notes: Each column reports the results of a linear regression. The unit of analysis is a mine-side-month. In Panel A, the
dependent variable is the mean normalized difference turbidity index (NDTI) of the river water on the upstream or downstream
side of a mine, in a given month. I derive remotely sensed turbidity from Landsat 7. In Panel B, the dependent variable is the
mean normalized difference vegetation index (NDVI) of the land within the 1km buffer along the river on either the upstream
or downstream side of a mine, in a given month. I derive remotely sensed yields from the MODIS Combined Terra and Aqua
product (MCD43A4.061). Downstream is equal to 1 if the side is downstream from the mine and 0 if it is upstream from the
mine. Log(Price) is the log of the commodity price for the main commodity extracted at the mine. All models include linear
and quadratic controls for mean temperature, precipitation, vapor pressure, wet days, evapotranspiration and cloud cover, as
well as mine-side and mine-year-month fixed effects. For turbidity, the sample includes the mines for which non-missing NDTI is
observed on the upstream and downstream sides for at least 2 months in each year, for at least 2 years pre and 2 years post-mine
opening. For yields, the sample includes the mines for which non-missing NDVI is observed on the upstream and downstream
sides for at least 6 months in each year, for at least 2 years pre- and 2 years post-mine opening. Column 1 reports results
estimated by pooling months over all 5 seasons: planting, early growing, late growing, harvest and non-farm. Column 2 reports
results estimated only over months in the early growing and late growing seasons and Column 3 reports results estimated only
over months in non-growing seasons: planting, harvest and non-farm. Standard errors in parentheses are clustered by mine.
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Table 20: Relationship Between Mineral Price Shocks, Remotely-Sensed Air Pollution and Crop Yields

(1) (2) (3)

All 20+ days
downwind

25+ days
downwind

Panel A: First Stage for AOD
Wind × Log(Price) 0.00007 0.00016 0.00051

(0.00073) (0.00093) (0.00137)
Mines 254 254 191
Observations 179,172 82,960 46,916
Mean AOD (t-3) .23 .23 .23

Panel B: Reduced Form for Yields
Wind × Log(Price) –0.00129 –0.00056 –0.00023

(0.00082) (0.00073) (0.00079)
Mines 254 254 191
Observations 179,172 82,960 46,916
Mean NDVI (t-3) .49 .49 .49

Mine-side FE Yes Yes Yes
Mine-year-month FE Yes Yes Yes
Weather Yes Yes Yes

Notes: Each column reports the results of a linear regression. The unit of analysis is a mine-side-month. In Panel A, the
dependent variable is mean aerosol optical depth (AOD) for one of the four sides (N,S, E, W) of a mine within a 60km buffer, in
a given month. I derive AOD from the MODIS Aqua Level 2 Daily product (MYD04 3K). In Panel B, the dependent variable is
mean normalized difference vegetation index (NDVI) for one of the four sides of a mine within a 60km buffer, in a given month.
I derive remotely sensed yields from the MODIS Combined Terra and Aqua product (MCD43A4.061). Wind is defined as the
share of days in a month that a side is downwind from the mine. Log(Price) is the natural log of monthly commodity price
for the main commodity extracted at the mine site. All models include linear and quadratic controls for mean temperature,
precipitation, vapor pressure, wet days, evapotranspiration and cloud cover, as well as mine-side fixed effects, mine-year-month
fixed effects and mean wind speed. The sample includes the mines for which non-missing AOD and NDVI are observed on all
four sides of the mine for at least 4 months in each year, for at least 5 years pre and 5 years post-mine opening. Column 1
reports results from a model estimated over all mine months while Column 2 (3) subsets to only mine-months where the side
that is downwind most frequently receives at least 20 (25) days of wind from the mine. Standard errors in parentheses are
clustered by mine.

Table 21: Average effect of mine openings on NDVI - interaction with mineral prices

(1) (2) (3)
Pooled Growing only Non-growing only

Near × Log(Price) -0.00522∗∗∗ -0.00572∗∗∗ -0.00479∗∗∗

(0.000784) (0.000848) (0.000840)
Number of mines 240 240 240
Obs. 131790 62426 69364
Mine-distance group FE Yes Yes Yes
Mine-year-month FE Yes Yes Yes
Weather Yes Yes Yes
Mean NDVI (t-1) .484 .557 .419

Each column reports the results of a linear regression. The unit of analysis is a mine-distance group-month. The dependent
variable is mean NDVI within a given distance group, in a given month. Near is equal to 1 for area within the 20km buffer
around the mine and equal to 0 for the area in the ring between the buffers of 100km and 150km. Log(Price) is equal to the
natural log of the monthly commodity price for the main commodity extracted at the mine. All models include linear and
quadratic controls for mean temperature, precipitation, vapor pressure, wet days, evapotranspiration and cloud cover, as well
as mine and year-month fixed effects. The sample includes the mines for which non-missing NDVI is observed in both distance
groups for at least 4 months in each year, for at least 3 years pre- and 3 years post-mine opening. Column 1 reports results
estimated by pooling months over all 5 seasons: planting, early growing, late growing, harvest and non-farm. Column 2 reports
results estimated only over months in the early growing and late growing seasons and Column 3 reports results estimated only
over months in non-growing seasons: planting, harvest and non-farm. Standard errors in parentheses are clustered by mine.
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11.11.2 Mine Closings To test for symmetry in effects of mine closings, I report analogous versions of

Tables 1, 2 and 3, re-defining the Post dummy to be equal to 1 for the years after a mine closes.

Table 22: Relationship Between Industrial Mine Closings, Remotely-Sensed Water Turbidity and Crop Yields

(1) (2) (3)

All seasons Growing Non-growing

Panel A: First Stage for Turbidity
Downstream × Post –0.02519 –0.04564 –0.01455

(0.04165) (0.04175) (0.04284)
Mines 3 3 3
Observations 1,022 448 574
Mean NDTI (t-1) .06 .05 .07

Panel B: Reduced Form for Yields
Downstream × Post –0.01195 –0.02095 –0.00336

(0.01518) (0.01426) (0.01670)
Mines 4 4 4
Observations 2,178 1,080 1,098
Mean NDVI (t-1) .42 .5 .34

Mine-side FE Yes Yes Yes
Mine-year-month FE Yes Yes Yes
Weather Yes Yes Yes

Notes: Each column reports the results of a linear regression. The unit of analysis is a mine-side-month. In Panel A, the
dependent variable is the mean normalized difference turbidity index (NDTI) of the river water on the upstream or downstream
side of a mine, in a given month. I derive remotely sensed turbidity from Landsat 7. In Panel B, the dependent variable is the
mean normalized difference vegetation index (NDVI) of the land within the 1km buffer along the river on either the upstream
or downstream side of a mine, in a given month. I derive remotely sensed yields from the MODIS Combined Terra and Aqua
product (MCD43A4.061). Downstream is equal to 1 if the side is downstream from the mine and 0 if it is upstream from
the mine. Post is equal to 1 after the mine closed, 0 otherwise. All models include linear and quadratic controls for mean
temperature, precipitation, vapor pressure, wet days, evapotranspiration and cloud cover, as well as mine-side and mine-year-
month fixed effects. For turbidity, the sample includes the mines for which non-missing NDTI is observed on the upstream
and downstream sides for at least 2 months in each year, for at least 2 years pre and 2 years post-mine closing. For yields,
the sample includes the mines for which non-missing NDVI is observed on the upstream and downstream sides for at least 6
months in each year, for at least 2 years pre- and 2 years post-mine closing. Column 1 reports results estimated by pooling
months over all 5 seasons: planting, early growing, late growing, harvest and non-farm. Column 2 reports results estimated
only over months in the early growing and late growing seasons and Column 3 reports results estimated only over months in
non-growing seasons: planting, harvest and non-farm. Standard errors in parentheses are clustered by mine.
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Table 23: Relationship Between Industrial Mine Closings, Remotely-Sensed Air Pollution and Crop Yields

(1) (2) (3)

All 20+ days
downwind

25+ days
downwind

Panel A: First Stage for AOD
Wind × Post –0.00343 –0.00181 –0.00260

(0.00299) (0.00244) (0.00401)
Mines 30 30 17
Observations 21,092 7,800 4,388
Mean AOD (t-3) .18 .18 .18

Panel B: Reduced Form for Yields
Wind × Post –0.00267 –0.00357 –0.00485

(0.00265) (0.00304) (0.00407)
Mines 30 30 17
Observations 21,092 7,800 4,388
Mean NDVI (t-3) .45 .45 .45

Mine-side FE Yes Yes Yes
Mine-year-month FE Yes Yes Yes
Weather Yes Yes Yes

Notes: Each column reports the results of a linear regression. The unit of analysis is a mine-side-month. In Panel A, the
dependent variable is mean aerosol optical depth (AOD) for one of the four sides (N,S, E, W) of a mine within a 60km buffer, in
a given month. I derive AOD from the MODIS Aqua Level 2 Daily product (MYD04 3K). In Panel B, the dependent variable
is mean normalized difference vegetation index (NDVI) for one of the four sides of a mine within a 60km buffer, in a given
month. I derive remotely sensed yields from the MODIS Combined Terra and Aqua product (MCD43A4.061). Wind is defined
as the share of days in a month that a side is downwind from the mine. Post is equal to 1 after a mine closes, 0 otherwise. All
models include linear and quadratic controls for mean temperature, precipitation, vapor pressure, wet days, evapotranspiration
and cloud cover, as well as mine-side fixed effects, mine-year-month fixed effects and mean wind speed. The sample includes
the mines for which non-missing AOD and NDVI are observed on all four sides of the mine for at least 4 months in each year,
for at least 2 years pre and 2 years post-mine closing. Column 1 reports results from a model estimated over all mine months
while Column 2 (3) subsets to only mine-months where the side that is downwind most frequently receives at least 20 (25) days
of wind from the mine. Standard errors in parentheses are clustered by mine.

Table 24: Average effect of mine closings on NDVI - both pollution and market channels

(1) (2) (3)
Pooled Growing Non-growing

Near x Post -0.00402∗ -0.00660∗∗ -0.000972
(0.00214) (0.00235) (0.00217)

Number of mines 17 17 17
Obs. 9330 4660 4670
Mine-distance group FE Yes Yes Yes
Mine-year-month FE Yes Yes Yes
Weather Yes Yes Yes
Mean NDVI (t-1) .452 .495 .409

The unit of analysis is a mine-distance group-month. The dependent variable is mean NDVI within a given distance group, in
a given month. Near is equal to 1 for area within the 20km buffer around the mine and equal to 0 for the area in the ring
between the buffers of 100km and 150km. Post is equal to 1 after the mine closed, 0 otherwise. I include linear and quadratic
controls for mean temperature, precipitation, vapor pressure, wet days, evapotranspiration and cloud cover, as well as mine
and year-month fixed effects. The sample includes the mines for which non-missing NDVI is observed in both distance groups
for at least 4 months in each year, for at least 2 years pre- and 2 years post-mine closing. Column 1 reports results estimated
by pooling months over all 5 seasons: planting, early growing, late growing, harvest and non-farm. Column 2 reports results
estimated only over months in the early growing and late growing seasons and Column 3 reports results estimated only over
months in non-growing seasons: planting, harvest and non-farm. Standard errors in parentheses are clustered by mine.
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11.11.3 No Overlapping Buffers I estimate robustness of results in Tables 2, 1 and 3 to removing

mines with buffers that overlap with neighboring mines, so may experience pollution spillovers.

Table 25: Relationship Between Industrial Mine Openings, Remotely-Sensed Water Turbidity and Crop
Yields - No Overlapping Buffers

(1) (2) (3)

All seasons Growing Non-growing

Panel A: First Stage for Turbidity
Downstream × Post 0.00324 0.00106 0.00521

(0.00711) (0.00821) (0.00703)
Mines 26 26 26
Observations 9,912 4,618 5,294
Mean NDTI (t-1) .02 0 .04

Panel B: Reduced Form for Yields
Downstream × Post –0.00801 –0.01068 –0.00596

(0.00567) (0.00708) (0.00523)
Mines 32 32 32
Observations 17,256 8,098 9,158
Mean NDVI (t-1) .47 .54 .41

Mine-side FE Yes Yes Yes
Mine-year-month FE Yes Yes Yes
Weather Yes Yes Yes

Notes: Each column reports the results of a linear regression. The unit of analysis is a mine-side-month. In Panel A, the
dependent variable is the mean normalized difference turbidity index (NDTI) of the river water on the upstream or downstream
side of a mine, in a given month. I derive remotely sensed turbidity from Landsat 7. In Panel B, the dependent variable is the
mean normalized difference vegetation index (NDVI) of the land within the 1km buffer along the river on either the upstream
or downstream side of a mine, in a given month. I derive remotely sensed yields from the MODIS Combined Terra and Aqua
product (MCD43A4.061). Downstream is equal to 1 if the side is downstream from the mine and 0 if it is upstream from
the mine. Post is equal to 1 after the mine opened, 0 otherwise. All models include linear and quadratic controls for mean
temperature, precipitation, vapor pressure, wet days, evapotranspiration and cloud cover, as well as mine-side and mine-year-
month fixed effects. For turbidity, the sample includes the mines for which non-missing NDTI is observed on the upstream and
downstream sides for at least 2 months in each year, for at least 2 years pre and 2 years post-mine opening. For yields, the
sample includes the mines for which non-missing NDVI is observed on the upstream and downstream sides for at least 6 months
in each year, for at least 2 years pre- and 2 years post-mine opening. The sample excludes mines where the upstream and
downstream buffers overlap with another mine in the sample. Column 1 reports results estimated by pooling months over all 5
seasons: planting, early growing, late growing, harvest and non-farm. Column 2 reports results estimated only over months in
the early growing and late growing seasons and Column 3 reports results estimated only over months in non-growing seasons:
planting, harvest and non-farm. Standard errors in parentheses are clustered by mine.
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Table 26: Relationship Between Industrial Mine Openings, Remotely-Sensed Air Pollution and Crop Yields
- No Overlapping Buffers

(1) (2) (3)

All 20+ days
downwind

25+ days
downwind

Panel A: First Stage for AOD
Wind × (Post - 3) 0.00410* 0.00397 0.00641*

(0.00221) (0.00247) (0.00318)
Mines 28 28 26
Observations 19,948 11,296 6,580
Mean AOD (t-3) .21 .21 .21

Panel B: Reduced Form for Yields
Wind × (Post - 3) 0.00170 0.00190 0.00288

(0.00180) (0.00186) (0.00198)
Mines 28 28 26
Observations 19,948 11,296 6,580
Mean NDVI (t-3) .51 .51 .51

Mine-side FE Yes Yes Yes
Mine-year-month FE Yes Yes Yes
Weather Yes Yes Yes

Notes: Each column reports the results of a linear regression. The unit of analysis is a mine-side-month. In Panel A, the
dependent variable is mean aerosol optical depth (AOD) for one of the four sides (N,S, E, W) of a mine within a 60km buffer, in
a given month. I derive AOD from the MODIS Aqua Level 2 Daily product (MYD04 3K). In Panel B, the dependent variable
is mean normalized difference vegetation index (NDVI) for one of the four sides of a mine within a 60km buffer, in a given
month. I derive remotely sensed yields from the MODIS Combined Terra and Aqua product (MCD43A4.061). Wind is defined
as the share of days in a month that a side is downwind from the mine. Post - 3 is equal to 1 after the investment phase of
a mine, which occurs 3 years before the mine opened, 0 otherwise. All models include linear and quadratic controls for mean
temperature, precipitation, vapor pressure, wet days, evapotranspiration and cloud cover, as well as mine-side fixed effects,
mine-year-month fixed effects and mean wind speed. The sample includes the 28 mines for which non-missing AOD and NDVI
are observed on all four sides of the mine for at least 4 months in each year, for at least 5 years pre and 5 years post-mine
opening, and for which the buffers around the mine do not overlap with any other mine in the sample. Column 1 reports results
from a model estimated over all mine months while Column 2 (3) subsets to only mine-months where the side that is downwind
most frequently receives at least 20 (25) days of wind from the mine. Standard errors in parentheses are clustered by mine.
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Table 27: Average effect of mine openings on NDVI - both pollution and market channels, no overlapping
buffers

(1) (2) (3)
Pooled Growing only Non-growing only

Near x Post -0.00247∗ -0.00365∗∗ -0.00159
(0.00135) (0.00166) (0.00125)

Number of mines 118 118 118
Obs. 64822 28542 36280
Mine-distance group FE Yes Yes Yes
Mine-year-month FE Yes Yes Yes
Weather Yes Yes Yes
Mean NDVI (t-1) .487 .556 .432

Each column reports the results of a linear regression. The unit of analysis is a mine-distance group-month. The dependent
variable is mean NDVI within a given distance group, in a given month. Near is equal to 1 for area within the 20km buffer
around the mine and equal to 0 for the area in the ring between the buffers of 100km and 150km. Post is equal to 1 after the
mine opened, 0 otherwise. All models include linear and quadratic controls for mean temperature, precipitation, vapor pressure,
wet days, evapotranspiration and cloud cover, as well as mine and year-month fixed effects. The sample includes the 118 mines
for which non-missing NDVI is observed in both distance groups for at least 4 months in each year, for at least 3 years pre- and
3 years post-mine opening, and the buffers do not overlap with another mine in the sample. Column 1 reports results estimated
by pooling months over all 5 seasons: planting, early growing, late growing, harvest and non-farm. Column 2 reports results
estimated only over months in the early growing and late growing seasons and Column 3 reports results estimated only over
months in non-growing seasons: planting, harvest and non-farm. Standard errors in parentheses are clustered by mine.

11.11.4 Irrigated pixels only The table below reports the results for estimating Equation 5 using mean

NDVI calculated over only irrigated cropland pixels within water buffers as the outcome of interest.

Table 28

Mean NDVI - Irrigated Cropland Only
Downstream × Post -0.0206

(0.0233)
Number of mines 4
Mine-side FE Yes
Mine-year-month FE Yes
Mean NDVI (t-1) .46

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

11.11.5 Effect on Nightlights
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Table 29: Average effect of mine openings on nighttime light intensity - air

(1)
Mean Lights

Wind × Post -0.198
(0.121)

Number of mines 414
Obs. 36432
Mine-side FE Yes
Mine-year FE Yes
Weather Yes
Mean (t-1) 3.9

The unit of analysis is a mine-side-year. The dependent variable is mean nighttime light intensity on the side of a mine in a
given year. Wind is equal to the share of days in a year that a side is downwind from the mine. Post is equal to 1 after the mine
opened, 0 otherwise. All models include linear and quadratic controls for mean temperature, precipitation, vapor pressure, wet
days, evapotranspiration and cloud cover, as well as mine-side and mine-year fixed effects. The sample includes the mines for
which non-missing nightlights is observed on both sides for at least 2 years pre- and 2 years post-mine opening.

Table 30: Average effect of mine openings on nighttime light intensity - water

(1)
Mean Lights

Downstream × Post 0.439
(0.460)

Number of mines 65
Obs. 2860
Mine-side FE Yes
Mine-year FE Yes
Weather Yes
Mean (t-1) 5.23

The unit of analysis is a mine-side-year. The dependent variable is mean nighttime light intensity on the side of a mine in a
given year. Downstream is equal to 1 for the buffer around the downstream river segment from the mine and equal to 0 for the
buffer around the upstream river segment. Post is equal to 1 after the mine opened, 0 otherwise. All models include linear and
quadratic controls for mean temperature, precipitation, vapor pressure, wet days, evapotranspiration and cloud cover, as well
as mine-side and mine-year fixed effects. The sample includes the mines for which non-missing nightlights is observed on both
sides for at least 2 years pre- and 2 years post-mine opening.
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11.12 Measurement Error

11.12.1 Effect of Measurement Error on DID Estimates Ideally, I would observe farm-level yields

around mining areas over time and estimate the following version of Equation 5

Y ieldssmt = βY Exposuresm × Postmt + αsm + λmt +X′
smtΓ+ ϵsmt (12)

However, these data are not available in Sub-Saharan Africa, so I use NDVI as the remotely sensed proxy

for yields, estimating the following specification instead:

NDV Ismt = βỸ Exposuresm × Postmt + αsm + λmt +X′
smtΓ+ ϵsmt (13)

Due to measurement error in NDVI, estimation of Equation 13 will recover a different coefficient and

standard error for β̂Ỹ than those from Equation 13. To understand drivers of measurement error, I specify

the following linear measurement error model from Keogh et al. (2020):

NDV Ismt = θ + µY ield∗smt + vsmt (14)

where NDVI on side s of mine m at time t is observed, while total yields across all farms on side s of mine m

at time t is the true measure of interest and vsmt is noise. I assume v to be mean 0 and cov(Y ield∗, v) = 0.

Defining T = Exposure×Post, estimation of Equation 13 without any corrections to NDVI will uncover

the following coefficient:

E(β̂Ỹ ) = λβY +
σTv

σ2
T

(15)

where σ2
T is the variance in Exposure×Post and σTv is the covariance between the errors in NDVI and the

values of Exposure× Post.

With classical measurement error, estimates of the DID regressions using NDVI as the outcome of interest

will be unbiased, though standard errors will be larger. Classical measurement error corresponds to the

special case of Equation 14 where θ = 0, µ = 1 and cov(Y ield, v) = cov(T, v) = 0.

However, Proctor et al. (2023) show that assumptions of classical measurement error are unlikely to

hold in regressions with remotely sensed dependent variables, which are potentially subject to both mean-

reverting and differential measurement error. First, they demonstrate that mean-reverting measurement error

(negative correlation between errors in one variable and itself) is common with remotely-sensed measures by
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highlighting that extreme values are systematically underestimated in remotely sensed predictions (Bound

and Krueger, 1991; Ratledge et al., 2022). Mean-reverting measurement error corresponds to the case

of Equation 14 where µ < 1. Second, they demonstrate the presence of differential measurement error,

correlations between errors in one variable and levels of another variable, by showing non-zero covariance

between errors in one variable and levels of other variables.

If NDVI only suffers from mean-reverting error and no differential measurement error, a model using

uncorrected NDVI with measurement error will tend to have attenuated coefficients. Additionally, the back-

of-the-envelope calculation conducted in Section 7 will yield consistent estimates for the share of the overall

effect attributed to pollution. This is because no differential measurement error implies σTv = 0 in Equation

15 and taking the ratio of two estimates with NDVI as the outcome of interest will cancel out the bias from

λ.

While mean-reverting measurement error is most common with remotely-sensed variables, differential

measurement error explains most of the coefficient bias in the case of a mismeasured dependent variable.

Importantly, both mean-reverting and differential measurement error can also lead to bias in standard errors

of coefficients. In general, the reduced variance in the outcome variable in the presence of mean-reverting

measurement error in the dependent variable could lower the sum of squared errors and underestimate

standard errors on the DID coefficients of my main specification. However, when differential measurement

error is also present, the direction of bias in the uncertainty parameters is theoretically ambiguous (Caroll

et al., 2006).

Unfortunately, it is infeasible in my setting to implement the multiple imputation correction outlined by

Proctor et al. (2023) to address issues of measurement error bias in NDVI. This is because potential data

sources for ground-based yields (One Acre Fund data, World Bank LSMS-ISA) have an insufficient number

of observations that are observed for at least one year pre and post-mine openings, in both the near and

far groups. Proctor et al. (2023) highlight that the calibration set should have at least 500 observations,

otherwise bias can be even higher in the corrected model. Furthermore, while plot-level yields from data

outside of Sub-Saharan Africa could be used for the calibration set, bias in the corrected model can be higher

than in the uncorrected model if calibration locations are greater than 200km away from the locations used

in the main analysis Proctor et al. (2023).

11.12.2 Effect of Measurement Error on Quantification Exercise Given plot-level yields, the

“ideal” measure of NDVI for each plot, NDV I∗p , would be NDVI based on information detected by the

satellite without any errors or interference and calculated over the exact boundaries of plot p. However, the

NDVI measure used in Equation 11 differs from NDV I∗ in two ways. Dropping the t subscript for simplicity,
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I define the observed NDVI measure for plot p, which falls in cell c, as follows:

NDV Ip(c) = ξNDV I∗p + dp + ap

where dp corresponds to deviations from “true” plot-level NDVI caused by satellite-detection errors and

ap corresponds to deviations for plot p NDVI from the average of all plots in c. NDVI detection errors, dp,

are driven by a variety of factors, most notably cloud cover, but also surface reflectance, canopy thickness,

the level of atmospheric aerosols and sensor errors14. These detection errors make NDVI observed from

satellite data an imperfect measure of NDVI in the presence of no detection errors. Indeed, low pixel quality

due to detection errors can cause errors in vegetation indices to increase by 0.04-0.1. While some types of

detection errors, such as satellite sensor errors, are likely uncorrelated with plot-level yields, detection errors

driven by cloud cover or aerosol loading could be correlated with plot-level yields through the direct effect of

atmospheric determinants on crop health, so dp could introduce bias from non-classical measurement error.

Additionally, aggregation errors, ap, are generated by the limited 500m resolution of the MODIS data,

which makes it infeasible to obtain precise plot-level NDVI measures.15 GPS-based measures of plot area

from household surveys in four African countries show that over 50% of the fields in these countries are

smaller than 1 acre, suggesting that the grid-cells used in my analysis likely cover multiple plots (Carletto

et al., 2015). If yields are highly heterogeneous across plots within a grid-cell, averaging NDVI over the grid

cells may not only weaken the correlation between grid-cell NDVI and plot-level yields, but also introduce

aggregation bias into estimation of Equation 11.

I address measurement erorr in cell-level NDVI as follows. First, I limit potential bias from detection

errors by calculating NDVI using only high quality pixels free of clouds and aerosols, as well as controlling for

local weather variables such as cloud cover, vapor pressure and precipitation. Second, I estimate a version of

Equation 11 with grid cells of varying sizes (500m, 2500m, 5000m), to investigate whether βNDV I changes

with the degree of aggregation. The tables below report the results of estimating Equation 11 with grid cells

of various sizes.

14https://modis-land.gsfc.nasa.gov/ValStatus.php?ProductID=MOD13
15While higher resolution data is available from sources like Sentinal-2 or PlanetLabs, this data does not go far enough back

to cover mines that opened prior to 2014.
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Table 31: Relationship between Cell-level NDVI and Cell-level Yields, cell-size = 500m

(1) (2) (3) (4) (5)
Planting Early Growing Late Growing Harvest Nonfarm

Mean NDVI 45.68 38.76 40.76 30.06 7.269
(32.85) (25.83) (33.81) (22.08) (25.08)

Year FE Yes Yes Yes Yes Yes
Grid cell FE Yes Yes Yes Yes Yes
Include weather controls Yes Yes Yes Yes Yes
Mean Yields 3005.643 3005.643 3005.643 3005.643 3005.643
Obs. 340 467 421 524 445
R-sq 0.657 0.673 0.673 0.672 0.650

Each column reports the results of an OLS regression. The unit of observation is a cell-year. The dependent variable is mean
plot-level yields in kg/ha across all plots falling within a cell, in a given year. Mean NDVI is the average NDVI in the cell of
size 500m containing the plot, across days in a particular season during the year that maize on the plot was harvested. The
columns indicate the season for which NDVI is calculated during the year the plot was harvested. Mean NDVI is scaled so that
one unit represents a 0.01 increase in NDVI. Each regression includes linear controls for cell-level averages of growing degree
days, temperature and precipitation during the maize season across plots falling within the cell, as well as cell-level controls for
mean temperature, precipitation, vapor pressure, cloud cover, evapotranspiration and wet days. Year and cell-level fixed effects
are included in the regressions.

Table 32: Relationship between Cell-level NDVI and Cell-level Yields, cell-size = 2500m

(1) (2) (3) (4) (5)
Planting Early Growing Late Growing Harvest Nonfarm

Mean NDVI 21.96∗ 41.64∗∗ 0.756 29.74∗∗ 27.23∗∗

(12.06) (18.23) (16.61) (12.99) (10.77)
Year FE Yes Yes Yes Yes Yes
Grid cell FE Yes Yes Yes Yes Yes
Include weather controls Yes Yes Yes Yes Yes
Mean Yields 3005.643 3005.643 3005.643 3005.643 3005.643
Obs. 2038 2070 2071 2057 2069
R-sq 0.588 0.585 0.583 0.585 0.586

Each column reports the results of an OLS regression. The unit of observation is a cell-year. The dependent variable is mean
plot-level yields in kg/ha across all plots falling within a cell, in a given year. Mean NDVI is the average NDVI in the cell of
size 2500m containing the plot, across days in a particular season during the year that maize on the plot was harvested. The
columns indicate the season for which NDVI is calculated during the year the plot was harvested. Mean NDVI is scaled so that
one unit represents a 0.01 increase in NDVI. Each regression includes linear controls for cell-level averages of growing degree
days, temperature and precipitation during the maize season across plots falling within the cell, as well as cell-level controls for
mean temperature, precipitation, vapor pressure, cloud cover, evapotranspiration and wet days. Year and cell-level fixed effects
are included in the regressions.
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Table 33: Relationship between Cell-level NDVI and Cell-level Yields, cell-size = 5000m

(1) (2) (3) (4) (5)
Planting Early Growing Late Growing Harvest Nonfarm

Mean NDVI 11.93 54.57∗∗∗ 18.00 46.21∗∗∗ 34.77∗∗∗

(11.11) (15.96) (14.47) (11.52) (10.03)
Year FE Yes Yes Yes Yes Yes
Grid cell FE Yes Yes Yes Yes Yes
Include weather controls Yes Yes Yes Yes Yes
Mean Yields 3005.643 3005.643 3005.643 3005.643 3005.643
Obs. 2016 2040 2038 2036 2040
R-sq 0.551 0.559 0.552 0.557 0.553

Each column reports the results of an OLS regression. The unit of observation is a cell-year. The dependent variable is mean
plot-level yields in kg/ha across all plots falling within a cell, in a given year. Mean NDVI is the average NDVI in the cell of
size 5000m containing the plot, across days in a particular season during the year that maize on the plot was harvested. The
columns indicate the season for which NDVI is calculated during the year the plot was harvested. Mean NDVI is scaled so that
one unit represents a 0.01 increase in NDVI. Each regression includes linear controls for cell-level averages of growing degree
days, temperature and precipitation during the maize season across plots falling within the cell, as well as cell-level controls for
mean temperature, precipitation, vapor pressure, cloud cover, evapotranspiration and wet days. Year and cell-level fixed effects
are included in the regressions.
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