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Abstract

Cellphone data has proven successful in predicting socioeconomic status. However, data
limitations have hindered the study of the capacity of these models to predict welfare over time.
By relying on a panel sample with information collected two years apart, we test for decay in
the ability of an algorithm to predict wealth levels. We find evidence of model decay, with
the predictive capacity of a model trained on the first panel wave being 15-30% lower than
a model trained on the second wave survey and contemporary cellphone data. We link the
lower performance to re-ranking of households across the wealth distribution, changes in the
distribution of cellphone features over time and the rise of internet-based communication apps.
Finally, we explain how the COVID-19 pandemic serves as a mechanism through which these
effects could occur.
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1 Introduction

Most social programs in developing countries are articulated around the explicit objective of re-

ducing poverty (Elbers, Gunning and Kinsey, 2007). This objective makes targeting the poor an

integral part of program design, with widely studied benefits on improving the program’s cost-

effectiveness; see for example (Alatas et al., 2012; Coady, Grosh and Hoddinott, 2004; Brown,

Ravallion and Van de Walle, 2016). Detailed information on the geographic distribution of poverty

and wealth is a key parameter to guide decisions on the allocation of limited resources. However,

in developing countries the required information is often not available with the spatial or temporal

coverage necessary to inform the roll out of programs.

In recent years, non-traditional sources of data have shown potential to compensate for data

gaps. Among these applications, the usage of Cellphone Detail Records (CDR) has shown potential

to inform the targeting of humanitarian aid and measure the effects of policy interventions. These

applications work by leveraging the digital footprints from an individual’s communication transac-

tions, and through the combination of feature engineering and machine learning, accurately predict

wealth levels for small geographic regions and cellphone subscribers’ socioeconomic characteristics.

We build on this literature by testing the capacity of these models to impute welfare levels

over time. Specifically, we investigate whether the performance of a model trained on CDR data to

predict wealth levels declines over time, a phenomenon referred to in the machine learning literature

as model decay. We match a panel sample of surveyed households in Haiti to the participants’ CDR

data. Results show that the predictive capacity of the model trained to predict relative wealth in the

initial panel wave goes down by 15-30% when used to predict the observed wealth of the household

in the second wave, collected two years after.

We investigate several explanations for the loss of predictive capacity, linking each to concepts

in the model decay literature:

1. Changes in wealth ranking between survey rounds that cannot be captured by the model

2. Differential attrition among categories where prediction works best

3. Changes in the distribution of predictive features over time
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4. Rise in the use of communication apps, where the directions and volumes of calls and texts

are masked, excluding an important source of information from the training algorithms

Finally, we discuss the extent to which the COVID-19 pandemic could be driving the observed

effects listed above. While the existing literature investigates how the pandemic affected algorithms

designed to predict outcomes in the health and financial sectors, specifically in developed country

contexts, we make a contribution by discussing the extent to which these limitations are present in

algorithms using CDR data to predict wealth levels in a developing country context.

Our results are the first formal assessment of the capacity of machine learning models to properly

predict welfare levels at different points in time. Past applications of predicting individual welfare

levels using CDR data show success when used at single points in time. Our results point toward

the need of constantly updating socioeconomic information even in the era of big data, a situation

that is not unusual for commercial applications where similar algorithms are used to estimate credit

scoring.

2 Data and Methods

Survey Data. Our primarily analysis relies on two surveys. First, we use an nationally repre-

sentative in-person survey with information on 4,267 households, collected between May-October

2018. The survey was conducted by Finmark Trust as part of its ‘FinScope Consumer,’ and is

close to a Living Standards Measurement Survey (LSMS), asking questions related to household

demographics, asset ownership, food consumption, food security and access to financial services.

Our second source of information is a phone follow-up survey conducted in April 2021 on the orig-

inal survey participants, where we collected a subset of questions focused on asset ownership and

welfare. Since participation in the Finscope survey was in person, we only contacted the original

2,869 participants who provided a phone number at the time of the original survey. We ultimately

were able to recontact and match 505 individuals to their cellphone records, which we refer to as

the panel sample.

Call Detail Records. The call detail records (CDR) data are provided by the largest Mobile
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Network Operator (MNO) in Haiti, which accounts for about 75% of the cellphone market in the

country. The CDR data contain all transactions made in the network, providing information for

each phone call, text message, and mobile money transfer placed on the operator’s network. For

each transaction, we observe a unique identifier for the parties involved in the event (e.g., the

two subscribers on a phone call), a timestamp for the event and the location of the cellular tower

routing the transactions. The CDR data is anonymized, so we cannot see the content of calls or

text messages.

The underlying CDR data represents week-level statistics, so we must decide how many days

of cellphone transaction data to use in the feature generation process. While a wider time window

affords a more diverse set of transactions from which to extract information, it is also important

to consider how much wealth varies during this time window. We generate features using CDR

data from three time windows, each of which covers a four month period. Window 1 takes place

just after the in-person survey (12/10/2018 - 3/10/2019), while Window 2 occurs midway between

the in-person survey and the follow-up phone survey (12/10/2019 - 3/10/2020) and Window 3

(12/10/2020 - 3/10/2021) occurs just before the phone survey. Our choice of a four month window

aligns with existing applications predicting individual wealth levels, which extract features from

six months to 1 year of CDR data (Blumenstock, Cadamuro and On (2015); Aiken et al. (2022)).

Informed consent and matching. As part of the phone survey, participants provided ‘in-

formed consent’ to match their information with their CDR data. For the sample in the in-person

survey, we are able to match a total of 1,129 respondents with their CDR data for Window 1. This

sample includes both those individuals successfully contacted in the phone-follow up and those

whose lines had been disconnected for more than six months after the survey.1 Of these 1,129 indi-

viduals, only 505 individuals could be contacted in the follow-up phone survey and were matched

to all three windows of CDR data.

Wealth Index Our main outcome used to test the predictive capacity of CDR data is a wealth

1Between January and March 2021 we made four attempts to contact each number. In consultation with our
IRB, we used survey responses from respondents who either provided informed consent or whose line had been
disconnected for more than six months, making it impossible to re-contact the original survey respondent. Out of
2,869 respondents with a phone, 909 belonged to a different MNO network, 167 refuse to participate in the phone
survey and 661 numbers remained active but could not be contacted.
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index calculated via principal components analysis (PCA), which includes 14 underlying binary

asset variables. We run the PCA separately over the in-person and phone follow-up samples, using

assets that were covered by questions present in both surveys. Overall, the relative weights of the

variables are similar across surveys and samples; see Table 1.2

Asset Loadings 2018 - Window 1 Loadings 2018 - Panel Loadings 2020 - Panel Asset Mean 2018 - Window 1 Asset Mean 2018 - Panel Asset Mean 2020 - Panel

tv 0.51 0.44 0.42 0.49 0.58 0.54
radio 0.35 0.26 0.31 0.59 0.65 0.58
fridge 0.36 0.41 0.37 0.19 0.29 0.32
fan 0.43 0.44 0.41 0.24 0.34 0.37
bike 0.05 0.06 0.03 0.04 0.06 0.08
motorbike 0.03 0.05 0.10 0.07 0.08 0.18
car 0.11 0.14 0.12 0.05 0.07 0.07
computer 0.14 0.19 0.22 0.07 0.11 0.16
washing machine 0.03 0.05 0.03 0.01 0.02 0.02
wardrobe 0.34 0.38 0.25 0.29 0.36 0.37
ac 0.01 0.01 0.02 0.01 0.02 0.01
electric appliances 0.27 0.29 0.42 0.19 0.25 0.54
gas 0.20 0.25 0.33 0.10 0.15 0.29
bed 0.18 0.15 0.07 0.78 0.82 0.92
N 1129 505 505 1129 505 505

Table 1: Magnitude of First Principal Component for 2018 field survey and 2021 phone survey

Non-random attrition. Since our goal is to test the capacity of CDR data to predict a

wealth index, we test for non-random attrition between the samples in the 2018 in-person survey

and the phone follow-up (1,129 and 505 participants, respectively.) We estimate a probit model on

the in-person survey data using 1,048 of the 1,129 households that could be matched to the CDR

data, who also had complete information on head of household characteristics. This allows us to

investigate the correlation of different observable characteristics on the probability of observing an

individual participating in the phone survey in 2021.

We show in Table 2 that households headed by wealthier and more educated individuals tend to

be more likely to remain in the panel. This is in line with past results where better-off individuals

are more likely to keep their cellphone numbers for longer periods (Barriga-Cabanillas and Lybbert,

2021).

2The wealth index estimated over the panel sample explains 64.9% of variance in asset ownership in the 2018
in-person survey but 81.3 % of the variance in asset ownership in the 2021 follow-up phone survey.
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Table 2

Remains in panel

Intercept -0.7826***
(0.2601)

Age 25-34 0.1944
(0.1863)

Age 35-44 0.4543**
(0.1887)

Age 45-54 0.3431*
(0.1947)

Age 55-64 0.2840
(0.2105)

Age 65+ 0.4065*
(0.2305)

Preschool/primary 0.0922
(0.1510)

Secondary 0.2691*
(0.1578)

University or higher education 0.5773***
(0.2114)

Male 0.1966**
(0.0824)

Urban 0.0444
(0.1349)

Wealth Index 0.4239***
(0.0638)

N 1048
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Feature engineering In its raw form, the CDR data provides a detailed record of a user’s

cellphone activity. We use feature engineering to extract information about each user’s behavioral

patterns of cellphone use that would correlated with socioeconomic characteristics, in this case a

wealth index.3 We extract features for the three different time windows using information from four

month intervals. The panel sample of 505 individual is present for all the three windows but the

original 1,129 individuals are only present in the first window due to attrition from the cellphone

network. For each phone number, we extract 998 features in each of the three time windows.

However, when estimating our predictive model we exclude features relating to the precise location

of cellphone towers and international calls. In addition, we adjust the features in Windows 2

and 3 relating to monetary variables, such as mobile money expenditures, for inflation so that all

expenditures are in 2018 values.

2.1 Prediction model

We adopt the machine-learning methods used by previous work (Aiken et al. (2022); Aiken et al.

(2023); Blumenstock, Cadamuro and On (2015)) to train a model that predicts wealth from CDR

features. Our preferred algorithm uses gradient boosting. The model is trained and evaluated with

five-fold cross validation, where hyperparameters are tuned independently on each fold, allowing us

to generate out-of-sample estimates of accuracy and out-of-sample predictions of wealth for every

household in the sample. Once the optimal hyperparameters have been determined, we re-train the

model over the entire sample. 4

The optimal hyperparameters of the model trained on the 2018 panel sample include a learning

3Features are generated using Bandicoot, an open-source toolbox for CDR analysis. For a full description of the
method see De Montjoye, Rocher and Pentland (2016). Features extracted include information about an individual’s
overall behavior (average call duration and percent initiated conversations, percent of nocturnal interactions, inter-
event time between two phones calls), spatial patterns based on cell tower locations (the number of unique antennas
visited and the radius of gyration), social network (the entropy of their contacts and the balance of interactions per
contact) and recharge patterns (including the average amount recharged and the time between recharges).

4Parameter grid:

• Winsorization of features: either no winsorization or winsorize the top and bottom 0.5% of each feature

• Minimum data in each leaf: 10, 20, 50

• Number of estimators: 20, 50, 100

• Learning rate: 0.05, 0.075, 0.1
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rate of 0.1, 20 estimators, 50 data points in each leaf and winsorizing the top and bottom 0.5% of

each feature.

3 Results

As a benchmark, we start with the features from Window 1 and proceed to estimate independent

models that predict wealth based on the in-person survey in 2018 for the Window 1 and panel

sample. We compare the results for predictions generated by estimating the model over the Window

1 sample (N = 1129) with those results generated by estimating the model over the sub-sample of

these households that are present in the panel (N = 505).

As Table 3 shows, prediction performance is comparable between the model trained on the

2018 Window 1 sample for predicting 2018 wealth levels (Column 1) and the model trained and

predicting for the 2018 panel sample (Column 2), even if the panel sample contains about half the

observations and is affected by non-random attrition.

Table 3: Predicting household wealth

Statistic Train 2018, Test 2018 Train 2018, Test 2018 Panel Train 2020, Test 2020 Panel Train 2018, Test 2020 Panel

Pearson 0.405 0.438 0.318 0.366
Spearman 0.372 0.411 0.306 0.356
R2 0.163 0.192 0.101 0.130
N 1129.000 505.000 505.000 505.000

Next, we asses the capacity of the model trained on panel sample using features from Window 1

to predict wealth levels for these same individuals in 2020 using the features from Window 3. This

allows us to directly compare how well the 2018 model can predict the 2020 observed wealth levels.

From Table 3, we can see that across all measures of model fit, the model trained on the 2018 data

performs worse at predicting wealth for panel households in 2020 (Column 4) than 2018 (Column

2). The Pearson correlation coefficient drops from 0.438 to 0.366, while the Spearman correlation

coefficient drops from 0.411 to 0.356. R-squared also falls from 0.192 to 0.130. For a detailed

discussion about the poor fit of the model, across all samples, we refer to Barriga-Cabanillas et al.

(2021). Next, we turn to investigating the drivers of this model decay.
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4 Drivers of Model Decay

The term model decay is typically used to describe a phenomenon where the predictive capacity of

a model declines over time. The literature describes two main drivers of model decay: data drift

and concept drift. Data drift refers to a meaningful change in the input data or the distribution of

the variables used in the prediction model over time, while concept drift describes situations where

the relationship between the input data (CDR) and the target variable (wealth index) changes over

time, while the distribution of the inputs might remain the same. In practice, it is often difficult

to distinguish between these two phenomena as both can operate at the same time.

We explore four potential explanations for the deterioration of our model’s performance between

2018 and 2021: (1) attrition from the panel and differential model performance across categories,

(2) changes in the distribution of predictive features, (3) re-ranking of wealth between survey rounds

that cannot be captured by the model and (4) the increasing use of communication apps, such as

WhatsApp, that is not captured by the voice and text data transactions. We attempt to link each

explanation to the ideas of data and concept drift from the model decay literature.

4.1 Attrition and differential accuracy across categories

In our setting, we may be concerned if the model predicts well on sub-groups of individuals that drop

out of the panel between 2018 and 2021. Recalling that less wealthy and less educated households

tend to drop out of the panel, if we find evidence that model fit is higher for these groups, the lower

predictive capacity could be related to the exiting of these individuals from the sample.

To investigate this, we calculate the R2 and Spearman correlation coefficient between the true

and predicted wealth index from the model trained on features from Window 1 and predicting

wealth for all individuals that could be matched to the Window 1 data, by sub-group. This allows

us to examine how model fit varies by household characteristics such as gender, age and education

level of the head of household, as well as whether the household is located in a rural or urban area.

As we can see in Table 4, the model trained on the Window 1 data to predict the 2018 wealth

levels does not equally predict across individual characteristics. However, we do not find consistent

evidence that model fit is lower for more educated or wealthier individuals, relative to less educated
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and less wealthy individuals. In regards to education, while we find that the R-squared for the

most educated sub-group is lower relative to the other education levels, we find that the Spearman

correlation is higher. When examining model fit across wealth terciles, we see that the fit is best,

although still poor, for the wealthiest tercile. Thus, while non-random attrition of households

from the panel where predictive performance was highest could be an explanation for worse model

performance on the 2021 data, our findings on this are inconclusive and we turn to other potential

explanations of model decay.

Table 4: Model Fit by Subgroup

Group Spearman R2 N

Female 0.331 0.135 617
Male 0.395 0.169 512
Rural 0.037 -1.111 124
Urban 0.372 0.160 1005
Age 15-24 0.340 -0.093 65
Age 25-34 0.300 0.068 261
Age 35-44 0.419 0.188 276
Age 45-54 0.359 0.174 258
Age 55-64 0.341 0.196 159
Age 65+ 0.424 0.223 110
no education 0.384 0.093 102
preschool/primary 0.281 0.043 351
secondary 0.255 0.020 496
university or higher 0.486 -0.095 99
Wealth Tercile 1 0.062 -9.853 448
Wealth Tercile 2 0.105 -2.471 305
Wealth Tercile 3 0.214 -2.615 376
Total 0.372 0.163 1129

4.2 Changes in the distribution of the predictive features

Data drift can be driven by changes in the distribution of the features used in the predictive model.

In our setting, this would arise if the distribution of variables in the CDR data displays meaningful

changes between Window 1 and Window 3. An advantage of our data is that both survey rounds

were collected in similar time periods of the year, which allows us to eliminate the effects of seasonal

cellphone usage patterns.
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Table 5 shows the 10 most important variables from the model trained on the 2018 data, used to

predict wealth levels in 2018, with panel households only. Feature importance is calculated based

on the total number of times each feature is used to split nodes across all trees used in the gradient

boosting algorithm.

Table 5: Features with highest importance. Model trained on 2018 panel sample

Feature Importance

number of antennas weekday day 6
recharges sum 5
interevent time weekend night call median 4
recharges mean 4
interevent time allweek day text std 3
percent pareto durations allweek allday 3
entropy of contacts weekday allday call 3
number of antennas weekday allday 3
percent nocturnal allweek call 3
interevent time weekday day call kurtosis 3

We plot the histograms and provide summary statistics for each of these features across three

time windows of CDR data, to illustrate how the distributions of these variables are changing over

time. Below each plot, the top table provides the summary statistics for each of the most important

features across individuals that are present in all three windows of the CDR data. The second table

provides the mean of the feature for only observations in the Finscope data that could be matched

to all three windows of CDR data and are part of the panel sample (N = 505), by wealth tercile (as

defined by the wealth index that is calculated using the panel sample for asset data in 2018) and

window. Taken together, we argue that significant changes in the distributions of the 2018 model’s

most important predictors over time could be a meaningful driver of model decay.5

The COVID-19 pandemic is an important mechanism that could explain the changing distribu-

tion of important features from 2018 to 2021. The pandemic likely influenced the extent and the

ways that people used their phones. Call and text volume likely increased as people tried to comply

with social distancing protocols, while mobile money transactions also likely increased as a strat-

5Figures and tables exploring the distributions over time for the remaining 6 variables from the set of most
important predictors are included in the Appendix.
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Figure 1: Number of Antennas Weekday

egy to cope with negative income shocks. Similarly, since peoples’ daily routines were dramatically

changed by the pandemic, the the times and locations where they used their phones might also

have been affected. Indeed, we see some evidence in favor of this hypothesis by comparing Table

5 and Table 6: features relating to mobile money transactions are more important for predicting

wealth in the model trained on the 2020 features than the model trained on the 2018 features.

Furthermore, we also see that features relating to the percent of calls and texts occurring at home

become more important.

Table 6: Features with highest importance. Model trained on 2020 panel sample

Feature Importance

mobiledata num transactions 10
entropy of antennas allweek allday 8
call duration allweek allday call kurtosis 5
balance of contacts allweek day text kurtosis 4
entropy of antennas weekday day 4
call duration weekend day call std 3
call duration allweek day call mean 2
percent nocturnal weekday call 2
mobilemoney all other amount mean 2
percent at home allweek night 2
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Figure 2: Mean Recharges

Statistic Window 1 Window 2 Window 3

Mean 40.390 44.068 42.136

Median 24.000 24.000 20.500

SD 51.317 60.342 60.661

Min 0.000 0.000 0.000

Max 517.000 647.000 549.000

N 931.000 931.000 931.000

Panel Wealth Tercile Window 1 Window 2 Window 3 N

Low 24.80 27.62 31.47 169

Med 47.42 54.85 52.95 168

High 70.02 79.31 72.91 168

Total 47.37 53.98 52.32 505
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Figure 3: Inter-event Time, All Week Texts

Statistic Window 1 Window 2 Window 3

Mean 31.851 33.915 41.840

Median 22.728 23.224 26.948

SD 32.935 40.914 57.972

Min 5.655 5.145 0.000

Max 403.151 599.945 903.164

N 931.000 931.000 931.000

Panel Wealth Tercile Window 1 Window 2 Window 3 N

Low 28.92 29.64 39.34 169

Med 27.78 29.47 35.98 168

High 46.34 42.49 59.23 168

Total 34.31 33.91 44.92 505
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Figure 4: Percent Nocturnal Calls

Statistic Window 1 Window 2 Window 3

Mean 478069.401 446452.346 464205.653

Median 306511.080 289282.197 271555.113

SD 559036.848 516544.842 536920.665

Min 0.000 0.000 0.000

Max 3624953.000 3371807.816 3260349.396

N 931.000 931.000 931.000

Panel Wealth Tercile Window 1 Window 2 Window 3 N

Low 491172.15 512514.57 455416.17 169

Med 472844.88 456895.56 496070.77 168

High 483517.43 474335.54 525890.06 168

Total 482327.22 480053.02 493554.74 505
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Statistic Window 1 Window 2 Window 3

Mean 0.252 0.259 0.241

Median 0.243 0.249 0.224

SD 0.103 0.123 0.130

Min 0.000 0.000 0.000

Max 0.962 1.000 1.000

N 931.000 931.000 931.000

Panel Wealth Tercile Window 1 Window 2 Window 3 N

Low 0.25 0.26 0.25 169

Med 0.26 0.25 0.25 168

High 0.23 0.23 0.20 168

Total 0.24 0.25 0.23 505

4.3 Wealth re-ranking

As discussed, the model trained on the 2018 data (Window 1) fails to predict the wealth levels of

the panel sample when using the feature levels in 2021 (Window 3). This could be driven by the re-

ranking of individual’s wealth over time due to shocks. Linking back to the model decay literature,

we are worried about concept drift: the meaning of what we are trying to predict (wealth) may be

evolving over time, even if the CDR data stays relatively constant. In this way, the relationship

between CDR features and wealth may be changing from 2018 to 2021, worsening the performance

of a model trained on 2018 data to predict wealth levels from CDR data in 2021.

To test for this, we compare the wealth distribution for the panel sample between 2018 and

2021. For completeness, we show the re-ranking both when independently estimating the PCA in

2018 and 2021, as well as applying the basis vector from 2018 to the asset data from 2021.

Comparing the fraction of households in each 2018 and 2021 wealth quintile suggests that there

is some re-ranking in the wealth distribution over time. When looking at the wealth index generated
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with the basis vector and asset data from 2021 (Table 7), while many of the poorest households

(Quintile 1) in 2018 remain the poorest households in 2021, many of these households are estimated

to be relatively wealthier in 2021 as they have moved into the second or third quintiles. Almost all

of the richest households in 2018 (Quintile 5), remain in the top two quintiles in 2021. Households

falling in Quintiles 2-4 in 2018 tended to be the most likely to move slightly up or down in the

wealth rankings in 2021. From Table 8, we also see that when looking at the wealth index generated

using the 2018 basis vector but the 2021 asset data, the re-ranking of households is similar.

Wealth Quintile 2020, 2020 loadings 1 2 3 4 5
Wealth Quintile 2018, 2018 loadings

1 0.406 0.287 0.149 0.119 0.040
2 0.308 0.250 0.173 0.135 0.135
3 0.206 0.225 0.255 0.157 0.157
4 0.099 0.129 0.188 0.376 0.208
5 0.041 0.113 0.155 0.216 0.474

Table 7: Wealth index in 2021 estimated using basis vector from PCA on 2021 data and asset data
from 2021

Wealth Quintile 2020, 2018 loadings 1 2 3 4 5
Wealth Quintile 2018, 2018 loadings

1 0.485 0.188 0.158 0.129 0.040
2 0.288 0.279 0.154 0.135 0.144
3 0.196 0.206 0.284 0.186 0.127
4 0.089 0.119 0.248 0.337 0.208
5 0.031 0.103 0.155 0.216 0.495

Table 8: Wealth index in 2021 estimated using basis vector from PCA on 2018 data and asset data
from 2021

It is difficult to discern whether this re-ranking is (1) an actual reflection of the household’s

wealth status changing over time or (2) a reflection of changing definitions of wealth over time.

For the former explanation, we must assume the set of assets that accurately captures wealth is

available in 2018 and does not change over time. Thus, any observed sorting of individuals in

the panel sample into different wealth quintiles occurs from some exogenous shock that changes

asset ownership. We try to minimize the extent to which the model might fail to capture changing
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definitions of wealth over time by only using assets for which ownership has not become radically

cheaper over the two years, such as having a landline. In both cases, the underlying concern is not

the re-ranking of households in the wealth distribution, but rather that the model cannot accurately

capture this re-ranking.

The COVID-19 pandemic is a potential explanation for this re-ranking of households over time.

First, fixing the set of assets used to define wealth, if certain households sold assets to smooth

consumption, they would appear relatively less wealthy in 2021. However, it is also possible that

COVID redefined the set of assets associated with being wealthy. In both cases, we are concerned

that our model is not equipped to pick up structural shifts in household wealth and the sources of

this wealth over time.

4.4 Rise in Communication Apps

A final potential explanation for the deterioration of the model between 2018 and 2021 is the rise

in usage of communication apps, such as WhatsApp, in Haiti. These apps allow for communication

via call or text through the Internet-based app. As consumers transitioned towards WhatsApp, we

would expect to see a reduction in the number of call and text transactions. However, the higher

data usage does not contain the same level of information (or signals) related with a person’s wealth.

For instance, the direction, frequency and number of unique contacts cannot be extracted from the

internet usage data, leaving only information about volume and location.

As a next step, we will show the changes in the total volume of transactions and explore the

extent to which using only features derived from data usage reduces our model’s predictive capacity.
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5 Appendix

6 Constructing the wealth index

I construct the wealth index by taking the first principal component from running PCA over the

following set of dummies for the presence of an asset in an household:

1. Television

2. Radio

3. Fridge

4. Fan

5. Bicycle

6. Motorbike

7. Private car

8. Computer

9. Washing machine

10. Wardrobe or dresser

11. Air conditioning

12. Electrical appliances

13. Gas appliances

14. Bed

Note that the 2018 Finscope includes information on the following additional assets: mobile

phone access, generator use, antenna, camera, water source and sewage system access. I do not

include these variables in the construction of the wealth index because they are not present in the
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asset questions for the 2020 Finscope survey and I wanted to calculate the wealth index for the

two years using a consistent set of variables so that differences in predictive power between the

two years would not be driven by the number/set of variables available. I also drop the following

assets: VCR, landline and jewelry.

6.1 Machine learning algorithm

I adopt the GBM methodology used by Aiken et al. (2022) to train a model that predicts wealth

index from CDR features. Specifically, I train a gradient boosting regressor with Microsoft’s light

GBM over the Window 1 and the panel samples, separately. Following Aiken et al. (2022), I tune

the hyperparameters of the model over three-fold cross validation, with parameters chosen from

the following grid:

• Winsorization of features: No winsorization, 0.5% limit

• Minimum data in leaf: 10, 20, 50

• Number of leaves: 5, 10, 20

• Number of estimators: 20, 50, 100

• Learning rate: 0.05, 0.075, 0.1

I train and evaluate the model over five-fold cross validation, with hyperparameters tuned inde-

pendently on each fold, to obtain out-of-sample estimates of accuracy and out-of-sample predictions

of wealth index for each observation in the Window 1 and panel samples. I then re-train the model

on all the data (for each of the two samples separately), record feature importances (the total

number of times a feature is split on over the entire forest) and use the final model to generate

wealth predictions for every subscriber each of the samples.
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6.2 Investigating Drivers of Model Decay

6.2.1 Distribution of most important predictors from 2018 model

The table below identifies the 10 most important predictors from the model trained on the 2018

data.

Feature Importance

number of antennas weekday day 6
recharges sum 5
interevent time weekend night call median 4
recharges mean 4
interevent time allweek day text std 3
percent pareto durations allweek allday 3
entropy of contacts weekday allday call 3
number of antennas weekday allday 3
percent nocturnal allweek call 3
interevent time weekday day call kurtosis 3

Table 9: Features with highest importance. Model trained on Window 1 Panel sample

I plot the histograms and provide summary statistics for each of these variables across three

time windows of CDR data, to illustrate how the distributions of these variables is changing over

time. Below each plot, the top table provides the summary statistics of each of the most important

features across individuals that are present in all three windows of the CDR data. The second table

provides the mean of the feature for only observations in the Finscope data that could be matched

to all three windows of CDR data and are part of the panel sample (N = 505), by wealth tercile

(as defined by the wealth index that is calculated using the panel sample in for asset data in 2018)

and window.
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Statistic Window 1 Window 2 Window 3

Mean 40.390 44.068 42.136

Median 24.000 24.000 20.500

SD 51.317 60.342 60.661

Min 0.000 0.000 0.000

Max 517.000 647.000 549.000

N 931.000 931.000 931.000

Panel Wealth Tercile Window 1 Window 2 Window 3 N

Low 24.80 27.62 31.47 169

Med 47.42 54.85 52.95 168

High 70.02 79.31 72.91 168

Total 47.37 53.98 52.32 505

Statistic Window 1 Window 2 Window 3

Mean 1352.649 1269.169 1439.156

Median 949.620 852.711 840.616

SD 1530.748 1478.748 2670.891

Min 9.090 7.658 0.000

Max 12813.640 17021.109 61415.179

N 931.000 931.000 931.000
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Panel Wealth Tercile Window 1 Window 2 Window 3 N

Low 1215.09 1015.66 1640.27 169

Med 1262.57 1272.78 1331.92 168

High 2172.68 1893.59 2153.77 168

Total 1548.21 1396.77 1711.17 505

Statistic Window 1 Window 2 Window 3

Mean 119962.163 115861.351 136751.623

Median 2493.000 2304.000 2656.000

SD 397330.426 415140.066 482936.439

Min 14.000 9.000 0.000

Max 5392421.000 4933226.000 7396019.000

N 931.000 931.000 931.000

Panel Wealth Tercile Window 1 Window 2 Window 3 N

Low 175211.95 71874.25 110828.40 169

Med 73786.77 115646.98 99190.98 168

High 63736.71 67317.14 82474.11 168

Total 104060.55 84918.34 97387.12 505
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Statistic Window 1 Window 2 Window 3

Mean 1352.649 1269.169 1439.156

Median 949.620 852.711 840.616

SD 1530.748 1478.748 2670.891

Min 9.090 7.658 0.000

Max 12813.640 17021.109 61415.179

N 931.000 931.000 931.000

Panel Wealth Tercile Window 1 Window 2 Window 3 N

Low 1215.09 1015.66 1640.27 169

Med 1262.57 1272.78 1331.92 168

High 2172.68 1893.59 2153.77 168

Total 1548.21 1396.77 1711.17 505
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Statistic Window 1 Window 2 Window 3

Mean 478069.401 446452.346 464205.653

Median 306511.080 289282.197 271555.113

SD 559036.848 516544.842 536920.665

Min 0.000 0.000 0.000

Max 3624953.000 3371807.816 3260349.396

N 931.000 931.000 931.000

Panel Wealth Tercile Window 1 Window 2 Window 3 N

Low 491172.15 512514.57 455416.17 169

Med 472844.88 456895.56 496070.77 168

High 483517.43 474335.54 525890.06 168

Total 482327.22 480053.02 493554.74 505

Statistic Window 1 Window 2 Window 3

Mean 0.208 0.215 0.243

Median 0.200 0.190 0.211

SD 0.108 0.158 0.178

Min 0.009 0.010 0.007

Max 1.000 1.000 1.000

N 931.000 931.000 931.000
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Panel Wealth Tercile Window 1 Window 2 Window 3 N

Low 0.21 0.21 0.23 169

Med 0.20 0.18 0.22 168

High 0.21 0.19 0.21 168

Total 0.21 0.19 0.22 505

Statistic Window 1 Window 2 Window 3

Mean 2.998 2.939 2.777

Median 3.060 3.014 2.902

SD 0.742 0.858 0.944

Min -0.000 -0.000 -0.000

Max 5.369 5.675 5.694

N 931.000 931.000 931.000

Panel Wealth Tercile Window 1 Window 2 Window 3 N

Low 3.02 2.99 2.83 169

Med 3.09 3.12 2.94 168

High 3.37 3.39 3.25 168

Total 3.16 3.17 3.00 505
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Statistic Window 1 Window 2 Window 3

Mean 44.383 47.556 44.943

Median 26.000 25.000 22.000

SD 55.868 64.807 64.573

Min 0.000 0.000 0.000

Max 565.000 658.000 557.000

N 931.000 931.000 931.000

Panel Wealth Tercile Window 1 Window 2 Window 3 N

Low 27.02 30.09 34.02 169

Med 52.36 59.60 56.73 168

High 77.05 85.74 77.08 168

Total 52.10 58.48 55.90 505
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Statistic Window 1 Window 2 Window 3

Mean 0.252 0.259 0.241

Median 0.243 0.249 0.224

SD 0.103 0.123 0.130

Min 0.000 0.000 0.000

Max 0.962 1.000 1.000

N 931.000 931.000 931.000

Panel Wealth Tercile Window 1 Window 2 Window 3 N

Low 0.25 0.26 0.25 169

Med 0.26 0.25 0.25 168

High 0.23 0.23 0.20 168

Total 0.24 0.25 0.23 505

Statistic Window 1 Window 2 Window 3

Mean 46.461 27.715 23.127

Median 29.943 17.498 13.675

SD 50.003 46.468 30.952

Min -2.000 -2.000 -2.000

Max 490.945 1064.270 468.679

N 931.000 931.000 931.000
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Panel Wealth Tercile Window 1 Window 2 Window 3 N

Low 33.37 23.14 23.76 169

Med 47.57 27.30 24.23 168

High 68.59 39.80 31.76 168

Total 49.77 30.12 26.62 505
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